Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy...Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem ceils. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-like cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers. In addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and mTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.展开更多
Self-organized blastoids from extended pluripotent stem(EPs)cells possess enormous potential for investigating postimplantation embryo development and related diseases.However,the limited ability of postimplantation d...Self-organized blastoids from extended pluripotent stem(EPs)cells possess enormous potential for investigating postimplantation embryo development and related diseases.However,the limited ability of postimplantation development of Eps-blastoids hinders its further application.In this study,single-cell transcriptomic analysis indicated that the“trophectoderm(TE)-like structure”of EPSblastoids was primarily composed of primitive endoderm(PrE)-related cells instead of TE-related cells.We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure.Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation.Furthermore,we demonstrated that blastocyst-like structures reconstituted by combining the EPs-derived bilineage embryo-like structure(BLEs)with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses.In summary,our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.展开更多
文摘Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem ceils. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-like cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers. In addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and mTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.
基金supported by the National Key R&D Program of China(Nos.2020YFA0112500 and 2021YFA1102900)the National Natural Science Foundation of China(Nos.31721003,81630035,82022027,31871448,32000418 and 31820103009)+2 种基金supported by the key project of the Science and Technology of Shanghai Municipality(Nos.19JC1415300 and 21JC1405500)the Shanghai municipal medical and health discipline construction projects(No.2017ZZ02015)the China Postdoctoral Science Foundation 2021M692437 and the Fundamental Research Funds for the Central Universities.
文摘Self-organized blastoids from extended pluripotent stem(EPs)cells possess enormous potential for investigating postimplantation embryo development and related diseases.However,the limited ability of postimplantation development of Eps-blastoids hinders its further application.In this study,single-cell transcriptomic analysis indicated that the“trophectoderm(TE)-like structure”of EPSblastoids was primarily composed of primitive endoderm(PrE)-related cells instead of TE-related cells.We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure.Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation.Furthermore,we demonstrated that blastocyst-like structures reconstituted by combining the EPs-derived bilineage embryo-like structure(BLEs)with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses.In summary,our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.