It is a challenge to recover lithium from the leaching solution of spent lithium-ion batteries,and crown ethers are potential extractants due to their selectivity to alkali metal ions.The theoretical calculations for ...It is a challenge to recover lithium from the leaching solution of spent lithium-ion batteries,and crown ethers are potential extractants due to their selectivity to alkali metal ions.The theoretical calculations for the selectivity of crown ethers with different structures to Li ions in aqueous solutions were carried out based on the density functional theory.The calculated results of geometries,binding energies,and thermodynamic parameters show that 15C5 has the strongest selectivity to Li ions in the three crown ethers of 12C4,15C5,and 18C6.B15C5 has a smaller binding energy but more negative free energy than 15C5 when combined with Li^+,leading to that the lithium ions in aqueous solutions will combine with B15C5 rather than 15C5.The exchange reactions between B15C5 and hydrated Li^+,Co^2+,and Ni^2+were analyzed and the results show that B15C5 is more likely to capture Li^+from the hydrated ions in an aqueous solution containing Li^+,Co^2+,and Ni^2+.This study indicates that it is feasible to extract Li ions selectively using B15C5 as an extractant from the leaching solution of spent lithium-ion batteries.展开更多
In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated ...In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated results show that FSUGold is as successful as NL3 in reproducing the ground-state binding energies of the nuclei in this region. The calculated two- neutron separation energies, quadrupole deformations, and root-mean-square charge radii are in agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 126 and give smaller neutron skin thicknesses than NL3 for all the nuclei considered.展开更多
This work was supported by National Basic Research Program of China (973 program) (No. 2011CB710605), TianYuan Special Funds of National Natural Science Foundation of China (No. 11226134), National Natural Scien...This work was supported by National Basic Research Program of China (973 program) (No. 2011CB710605), TianYuan Special Funds of National Natural Science Foundation of China (No. 11226134), National Natural Science Foundation of China (No. 61273215)展开更多
基金supported by the National Natural Science Foundation of China(No.51604005,No.U1703130,and No.51574003)
文摘It is a challenge to recover lithium from the leaching solution of spent lithium-ion batteries,and crown ethers are potential extractants due to their selectivity to alkali metal ions.The theoretical calculations for the selectivity of crown ethers with different structures to Li ions in aqueous solutions were carried out based on the density functional theory.The calculated results of geometries,binding energies,and thermodynamic parameters show that 15C5 has the strongest selectivity to Li ions in the three crown ethers of 12C4,15C5,and 18C6.B15C5 has a smaller binding energy but more negative free energy than 15C5 when combined with Li^+,leading to that the lithium ions in aqueous solutions will combine with B15C5 rather than 15C5.The exchange reactions between B15C5 and hydrated Li^+,Co^2+,and Ni^2+were analyzed and the results show that B15C5 is more likely to capture Li^+from the hydrated ions in an aqueous solution containing Li^+,Co^2+,and Ni^2+.This study indicates that it is feasible to extract Li ions selectively using B15C5 as an extractant from the leaching solution of spent lithium-ion batteries.
基金supported by National Natural Science Foundation of China (Nos. 10535010, 10675090, 10775068, 10735010, 10975072, 11035001)973 National Major State Basic Research and Development of China (Nos. 2007CB815004, 2010CB327803)+2 种基金CAS Knowledge Innovation Project (No. KJCX2-SW-N02)Research Fund of Doctoral Point (RFDP) (No. 20070284016)Science Foundation of Educational Committee of Anhui Province(No. KJ2012A083)
文摘In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated results show that FSUGold is as successful as NL3 in reproducing the ground-state binding energies of the nuclei in this region. The calculated two- neutron separation energies, quadrupole deformations, and root-mean-square charge radii are in agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 126 and give smaller neutron skin thicknesses than NL3 for all the nuclei considered.
基金supported by National Basic Research Program of China(973program)(No.2011CB710605)TianYuan Special Funds of National Natural Science Foundation of China(No.11226134)National Natural Science Foundation of China(No.61273215)
文摘This work was supported by National Basic Research Program of China (973 program) (No. 2011CB710605), TianYuan Special Funds of National Natural Science Foundation of China (No. 11226134), National Natural Science Foundation of China (No. 61273215)