期刊文献+
共找到447篇文章
< 1 2 23 >
每页显示 20 50 100
GAUSSIAN PRINCIPLE COMPONENTS FOR NONLOCAL MEANS IMAGE DENOISING
1
作者 Li Xiangping Wang Xiaotian Shi Guangming 《Journal of Electronics(China)》 2011年第4期539-547,共9页
NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PC... NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively. 展开更多
关键词 Image denoising NonLocal Means(NLM) Gaussian filter principle component analysis(pca)
下载PDF
基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型
2
作者 高科 吕航宇 +1 位作者 戚志鹏 刘玉姣 《矿业安全与环保》 CAS 北大核心 2024年第1期7-13,共7页
根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因... 根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因素的贡献率进行排序筛选,得到3个主成分指标(F_(1)、F_(2)和F_(3)),作为BP神经网络输入层的神经元。利用实测数据对PCA-BP神经网络模型进行训练和测试,并将测试结果与支持向量机回归(SVM)模型和BP神经网络模型的测试结果进行对比,结果显示:全因素的BP神经网络预测模型和SVM预测模型的平均精度分别为92.9420%、93.0235%,而PCA-BP预测模型的平均精度达到了96.4325%。PCA-BP神经网络模型不但简化了网络结构,更提高了网络的泛化能力,使预测误差更小、精度更高,为更准确地获得巷道通风摩擦阻力系数提供了一种有效的方法。 展开更多
关键词 矿井通风 巷道通风摩擦阻力系数 预测模型 pca-BP神经网络 主成分分析 影响因素
下载PDF
Application of Principle Component Analysis and Logistic Regression in Analyzing miRNA Markers of Brain Arteriovenous Malformation
3
作者 蒋路 黄俊 +2 位作者 张志君 杨国源 王永亭 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第6期641-645,共5页
Brain arteriovenous malformation(BAVM) is frequently described as vascular malformation. Although computer tomography(CT), magnetic resonance imaging(MRI) and angiography can clearly detect lesions, there are no diagn... Brain arteriovenous malformation(BAVM) is frequently described as vascular malformation. Although computer tomography(CT), magnetic resonance imaging(MRI) and angiography can clearly detect lesions, there are no diagnostic biological markers of BAVM available. Current study demonstrated that micro RNA(mi RNA)showed a feasible marker for vascular disease. To find key correlations between these mi RNAs and the onset of BAVM, we carried out chip analysis of serum mi RNAs by identifying 18 potential markers of BAVM. We then constructed a principle component analysis and logistic regression(PCA-LR) model to analyze the 18 mi RNAs collected from 77 patients. Another 9 independent samples were used to test the resulting model. The results showed that mi RNAs hsa-mir-126-3p and hsa-mir-140 are important protective factors, while hsa-mir-338 is a dominating risk factor, all of which have stronger correlation with BAVM than others. We also compared the testing results using PCA-LR model with those using LR model. The comparison revealed that PCA-LR model is better in predicting the disease. 展开更多
关键词 brain arteriovenous malformation(BAVM) microRNAs(miRNAs) principle component analysis(pca) logistic regression(LR)
原文传递
FEATURE-EXTRACT ANALYSIS OF SERIAL ANALYSIS OF GENE EXPRESSION DATA
4
作者 Su Hongquan Zhu Yisheng 《Journal of Electronics(China)》 2010年第6期848-852,共5页
Serial Analysis of Gene Expression (SAGE) is a powerful tool to analyze whole-genome expression profiles. SAGE data, characterized by large quantity and high dimensions, need reducing their dimensions and extract feat... Serial Analysis of Gene Expression (SAGE) is a powerful tool to analyze whole-genome expression profiles. SAGE data, characterized by large quantity and high dimensions, need reducing their dimensions and extract feature to improve the accuracy and efficiency when they are used for pattern recognition and clustering analysis. A Poisson Model-based Kernel (PMK) was proposed based on the Poisson distribution of the SAGE data. Kernel Principle Component Analysis (KPCA) with PMK was proposed and used in feature-extract analysis of mouse retinal SAGE data. The computa-tional results show that this algorithm can extract feature effectively and reduce dimensions of SAGE data. 展开更多
关键词 Serial analysis of Gene Expression (SAGE) Poisson distribution Kernel methods principle component analysis (pca)
下载PDF
Robust Principal Component Test in Gross Error Detection and Identification
5
作者 高倩 阎威武 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期553-558,共6页
Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal c... Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal com- ponent test (PCT) is non-robust and can be very sensitive to one or more outliers. In this paper, a Huber function liked robust weight factor was added in the collective chi-square test to eliminate the influence of gross errors on the PCT. Meanwhile, robust chi-square test was applied to modified simultaneous estimation of gross error (MSEGE) strategy to detect and identify multiple gross errors. Simulation results show that the proposed robust test can reduce the possibility of type Ⅱ errors effectively. Adding robust chi-square test into MSEGE does not obviously improve the power of multiple gross error identification, the proposed approach considers the influence of outliers on hypothesis statistic test and is more reasonable. 展开更多
关键词 gross error detection and identification chi-square test ROBUST principle component analysis (pca modified simultaneous estimation of gross error (MSEGE)
下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别
6
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(pca) 核主成分分析(kernel-pca) k-近邻算法(KNN) 分类识别
下载PDF
基于PCA和ICA模式融合的非高斯特征检测识别 被引量:1
7
作者 葛泉波 程惠茹 +3 位作者 张明川 郑瑞娟 朱军龙 吴庆涛 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期169-180,共12页
针对无人船(Unmanned surface vehicle,USV)航行位姿观测数据的非高斯性/高斯性判别问题,提出一种基于主成分分析(Principal component analysis,PCA)和独立成分分析(Independent component analysis,ICA)模式融合的非高斯特征检测识别... 针对无人船(Unmanned surface vehicle,USV)航行位姿观测数据的非高斯性/高斯性判别问题,提出一种基于主成分分析(Principal component analysis,PCA)和独立成分分析(Independent component analysis,ICA)模式融合的非高斯特征检测识别方法.首先,采用基于标准化加权平均和信息熵的数据预处理方法.其次,引入混合加权核函数并使用灰狼优化(Grey wolf optimization,GWO)算法进行参数优化,以提高PCA方法的准确性.同时,该算法采用一种新的非线性控制因子策略,提高全局和局部搜索能力.最后,建立了一种基于ICA和PCA联合的相关性分析方法来实现多维数据的降维,在降维数据的基础上综合T型多维偏度峰度检验法和KS(Kolmogorov-Smirnov)检验法进行非高斯性/高斯性特征检测识别.该方法考虑了非线性非高斯的噪声对降维结果精确度的影响,有效降低了多维数据非高斯检测的复杂度,同时也为后续在实际USV位姿估计等应用中提供了保障.实验表明,该方法具有较高的准确性和稳定性,可为USV航行位姿观测数据处理提供支持. 展开更多
关键词 主成分分析 混合核函数 灰狼优化算法 高维降维 非高斯
下载PDF
基于PCA-GA-RF的矿井突水水源快速识别模型
8
作者 肖观红 鲁海峰 《煤矿安全》 CAS 北大核心 2024年第6期184-191,共8页
矿井突水已成为影响矿山安全生产的主要危害之一,快速准确识别突水水源类型是矿井突水灾害治理的关键步骤。提出了1种基于PCA-GA-RF的矿井突水水源识别模型;基于安徽省颍上县谢桥煤矿的88组水样实测数据,遵循分层随机抽样的原则,按照7∶... 矿井突水已成为影响矿山安全生产的主要危害之一,快速准确识别突水水源类型是矿井突水灾害治理的关键步骤。提出了1种基于PCA-GA-RF的矿井突水水源识别模型;基于安徽省颍上县谢桥煤矿的88组水样实测数据,遵循分层随机抽样的原则,按照7∶3的比例将其分为62组训练样本和26组预测样本,经PCA提取4个主成分,构建PCA-GA-RF模型,并与PCA-RF、PCA-ABC-RF和PCA-FA-RF模型对比。结果表明:PCA-GA-RF模型判别结果准确率为96.153 8%,与其他模型相比准确率、精确率、召回率和F1值(精确召回率)最高,具有优越性。 展开更多
关键词 矿井突水 水源识别 主成分分析(pca) 随机森林(RF) 遗传算法(GA)
下载PDF
基于PCA和ICA的人脸识别 被引量:28
9
作者 刘直芳 游志胜 王运琼 《激光技术》 CAS CSCD 北大核心 2004年第1期78-81,共4页
提出利用主成分分析 (PCA)和独立成分分析 (ICA)相结合的方法对人脸进行识别。首先对预处理后的图像进行降维 ,即利用PCA算法对图像进行去二阶相关和降维处理 ,然后再利用ICA算法获得人脸影像独立基成分 ,利用人脸影像独立基来构造一子... 提出利用主成分分析 (PCA)和独立成分分析 (ICA)相结合的方法对人脸进行识别。首先对预处理后的图像进行降维 ,即利用PCA算法对图像进行去二阶相关和降维处理 ,然后再利用ICA算法获得人脸影像独立基成分 ,利用人脸影像独立基来构造一子空间 ,最后利用待识别图像在这个空间上的投影系数进行人脸识别。从两个不同的数据集 ,将传统的PCA人脸识别算法和提出的人脸识别算法进行比较。从实验数据结果看 。 展开更多
关键词 主成分分析 独立成分分析 人脸识别 特征脸 独立影像基
下载PDF
基于PCA与蚁群算法的机械故障聚类诊断方法 被引量:6
10
作者 陈安华 周博 +1 位作者 张会福 潘阳 《中国机械工程》 EI CAS CSCD 北大核心 2013年第24期3333-3337,3344,共6页
针对现代机械复杂化、智能化的特点,为快速准确地诊断出设备故障,提出了基于PCA与蚁群算法的机械故障聚类诊断新方法。定义了聚类准确率判别因子,对主元的选取进行自适应调整,利用基于高斯径向基核函数的主元分析方法实现了故障特征提... 针对现代机械复杂化、智能化的特点,为快速准确地诊断出设备故障,提出了基于PCA与蚁群算法的机械故障聚类诊断新方法。定义了聚类准确率判别因子,对主元的选取进行自适应调整,利用基于高斯径向基核函数的主元分析方法实现了故障特征提取。以蚁群算法解决旅行商问题为原型,定义了城市圈,改进蚁群算法实现了双重寻优,把故障聚类转化为蚁群算法最擅长的寻求最优解问题,将改进的蚁群算法用于故障特征样本的聚类。实例分析证明了该方法的有效性。 展开更多
关键词 主元分析 蚁群算法 聚类分析 故障诊断
下载PDF
PCA-BP神经网络模型预测导水裂隙带高度 被引量:22
11
作者 谢晓锋 李夕兵 +2 位作者 尚雪义 翁磊 邓青林 《中国安全科学学报》 CAS CSCD 北大核心 2017年第3期100-105,共6页
导水裂隙带高度的预测对煤矿安全开采有重要意义,而传统回归方法未考虑因素间相关系数对预测结果的影响。选取采深、煤层倾角、煤层厚度、煤层硬度、岩层结构、顶板岩石单轴抗压强度、开采厚度和采空区斜长作为预测导水裂隙带高度的影... 导水裂隙带高度的预测对煤矿安全开采有重要意义,而传统回归方法未考虑因素间相关系数对预测结果的影响。选取采深、煤层倾角、煤层厚度、煤层硬度、岩层结构、顶板岩石单轴抗压强度、开采厚度和采空区斜长作为预测导水裂隙带高度的影响因素,建立基于PCA-BP神经网络的导水裂隙带高度预测模型。测试结果表明,煤层厚度对导水裂隙带高度的影响最大,其余各因素对导水裂隙带高度的影响较大,采深和开采厚度对导水裂隙带高度的影响较小;PCA-BP神经网络模型的训练速度和预测效果均优于BP神经网络模型,且最大预测误差仅为5.58%。 展开更多
关键词 导水裂隙带高度 主成分分析(pca) 神经网络 影响因素 相关系数
下载PDF
基于PCA和多变量极限学习机的轴承剩余寿命预测 被引量:22
12
作者 何群 李磊 +1 位作者 江国乾 谢平 《中国机械工程》 EI CAS CSCD 北大核心 2014年第7期984-989,共6页
提出了一种基于主成分分析(PCA)和多变量极限学习机(MELM)的轴承剩余寿命预测方法。该方法首先利用PCA技术融合多个表征轴承运行状态与衰退趋势的时域频域特征指标来消除特征间的冗余性和相关性;进一步在单变量极限学习机(ELM)的基础上... 提出了一种基于主成分分析(PCA)和多变量极限学习机(MELM)的轴承剩余寿命预测方法。该方法首先利用PCA技术融合多个表征轴承运行状态与衰退趋势的时域频域特征指标来消除特征间的冗余性和相关性;进一步在单变量极限学习机(ELM)的基础上构建多变量极限学习机模型来预测轴承剩余寿命。该方法克服了传统单变量极限学习机结构简单、信息匮乏等缺点,能有效提高轴承剩余寿命的预测精度。运用全寿命轴承振动数据对模型进行验证,结果表明,相比单独应用ELM模型或MELM模型,基于PCA和MELM剩余寿命预测方法具有更高的预测精度和稳定性。 展开更多
关键词 主成分分析 极限学习机 多变量极限学习机 剩余寿命预测
下载PDF
用于目标识别的PCA-SC形状匹配算法 被引量:16
13
作者 黄伟国 顾超 朱忠奎 《光学精密工程》 EI CAS CSCD 北大核心 2013年第8期2103-2110,共8页
基于形状上下文(Shape Context)算法并融合主成分分析(PCA)的降维思想,提出了一种PCA-SC算法来提高形状匹配和目标识别的速度和抗噪能力。该算法将SC算法获取的特征矩阵构成协方差矩阵,按照特征值由大到小的准则进行降维,形成新的特征... 基于形状上下文(Shape Context)算法并融合主成分分析(PCA)的降维思想,提出了一种PCA-SC算法来提高形状匹配和目标识别的速度和抗噪能力。该算法将SC算法获取的特征矩阵构成协方差矩阵,按照特征值由大到小的准则进行降维,形成新的特征矩阵用于匹配和识别,既抑制了噪声干扰,提高了识别准确率,又能够提高匹配速度,易于满足工程应用对实时性的要求。利用MNIST图像数据库中的图像进行了实验分析,结果表明,PCA-SC算法在保持了SC算法原有的定位准确、抑制噪声等优点的基础上,识别速度提高了1倍;准确率达到了96.15%,提高了约0.5%;而且抗噪性更强,可用于匹配和识别较复杂的形状和目标。该算法基本满足匹配和识别对速度、准确率和抗干扰性等方面的要求。 展开更多
关键词 形状匹配 目标识别 主成分分析 形状上下文算法
下载PDF
多PCA模型及SVM-DS融合决策的服务机器人故障诊断 被引量:10
14
作者 袁宪锋 宋沐民 +1 位作者 周风余 陈竹敏 《振动.测试与诊断》 EI CSCD 北大核心 2015年第3期434-440,587,共7页
针对轮式服务机器人驱动系统故障诊断问题,提出一种基于多主成分分析(principal component analysis,简称PCA)模型及支持向量机和DS证据理论(support vector machine and dempster-shafer,简称SVM-DS)融合决策的故障诊断方法,分别利用... 针对轮式服务机器人驱动系统故障诊断问题,提出一种基于多主成分分析(principal component analysis,简称PCA)模型及支持向量机和DS证据理论(support vector machine and dempster-shafer,简称SVM-DS)融合决策的故障诊断方法,分别利用正常状态和故障状态下的传感器数据建立多个PCA模型。利用正常状态下的PCA模型实现故障的检测。传感器数据经多PCA模型特征提取后作为SVM的输入向量,实现故障的初步分离。基于混淆矩阵定义SVM的全局及局部可信度,并依据可信度值和故障初步分离结果完成基本概率分配函数的赋值,以实现SVM和DS证据理论在故障分离中的有效结合。实验结果表明,本研究方法能灵敏检测到机器人驱动系统故障的发生,故障分离平均正确率达92.6%,与传统单PCA模型的方法相比有更高的正确率和稳定性。 展开更多
关键词 服务机器人 故障诊断 主成分分析 支持向量机 DS证据理论
下载PDF
一种用于PCA与MCA的神经网络学习算法 被引量:6
15
作者 王哲 李衍达 罗发龙 《电子学报》 EI CAS CSCD 北大核心 1996年第4期12-16,共5页
主元分析(PCA)和次元分析(MCA)是用于特征提取、数据压缩、频率估计、曲线拟合等信号处理的基本技术.以神经网络来实现PCA和MCA是当今研究的一大热点,相关矩阵R的特征值重数不为1时的主、次元分析则是其中一大难题... 主元分析(PCA)和次元分析(MCA)是用于特征提取、数据压缩、频率估计、曲线拟合等信号处理的基本技术.以神经网络来实现PCA和MCA是当今研究的一大热点,相关矩阵R的特征值重数不为1时的主、次元分析则是其中一大难题.本文提出了一种新的学习算法,使得在输入数据的相关矩阵含多重特征值时。 展开更多
关键词 神经网络 主元分析 次元分析 学习算法 特征矢量
下载PDF
结合PCA和ICA的脑磁信号消噪研究 被引量:4
16
作者 高莉 黄力宇 丁翠玲 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期939-943,共5页
基于二阶统计特性的主分量分解(PCA)和基于高阶统计特性的独立成分分析(ICA)是盲源分离信号处理中两种最为典型的方法.针对多通道脑磁信号的消噪问题,提出一种基于PCA与ICA相结合的信号消噪新算法.首先通过对脑磁信号进行主分量分解来... 基于二阶统计特性的主分量分解(PCA)和基于高阶统计特性的独立成分分析(ICA)是盲源分离信号处理中两种最为典型的方法.针对多通道脑磁信号的消噪问题,提出一种基于PCA与ICA相结合的信号消噪新算法.首先通过对脑磁信号进行主分量分解来降低信号维数,去掉其中包含的冗余成分,使计算时间缩短到原来的10%;进而利用自适应最大熵独立成分分析算法对降维后的数据进行二次分解,提取出脑磁信号中含有的干扰分量,使信噪比从10 dB提高到80 dB,达到对信号进行消噪的目的. 展开更多
关键词 主分量分解 脑磁图 独立成分分析 干扰
下载PDF
一种基于人脸核心特征的PCA人脸识别算法及应用 被引量:19
17
作者 李冠楠 李强 《电子器件》 CAS 北大核心 2012年第5期607-610,共4页
传统的PCA人脸识别算法是直接从图像中提取人脸进行识别,由于人脸的大小、角度,光照等原因导致识别率低。本文提出的基于人脸核心特征的人脸识别算法是通过人脸核心特征,包括左眼、右眼、鼻子、嘴巴进行人脸识别。这种算法能有效克服人... 传统的PCA人脸识别算法是直接从图像中提取人脸进行识别,由于人脸的大小、角度,光照等原因导致识别率低。本文提出的基于人脸核心特征的人脸识别算法是通过人脸核心特征,包括左眼、右眼、鼻子、嘴巴进行人脸识别。这种算法能有效克服人脸识别中的大小、角度、光照等不利因素,显著提高了人脸识别率,并成功应用于智能相片搜索系统。 展开更多
关键词 人脸识别 核心特征 pca
下载PDF
基于PCA和混沌置乱的零水印算法 被引量:8
18
作者 胡裕峰 朱善安 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第4期593-597,共5页
针对传统的数字水印技术在图像中嵌入水印信息会导致图像在一定程度上的失真,且图像受到各种攻击后难以提取出水印的问题,提出了一种零水印算法,该算法可在不导致图像任何失真的情况下起到版权保护的作用.对图像进行分块和主成分分析(PC... 针对传统的数字水印技术在图像中嵌入水印信息会导致图像在一定程度上的失真,且图像受到各种攻击后难以提取出水印的问题,提出了一种零水印算法,该算法可在不导致图像任何失真的情况下起到版权保护的作用.对图像进行分块和主成分分析(PCA),得到图像的主要分量,基于Renyi映射生成混沌序列对图像的主要分量进行位置置乱,比较置乱后相邻主分量系数间的大小生成特征水印.当对待认证图像进行认证时,用同样的方法提取该认证图像的特征水印,比较两特征水印的相似度来判断图像的版权和所有权.实验结果表明,该算法的不可察觉性很好,并对一些常见的攻击,如JPEG压缩、剪裁、加噪、滤波和旋转等有很强的鲁棒性.与小波域内图像零水印算法的比较结果证明了该方法具有更强的鲁棒性. 展开更多
关键词 主成分分析 Renyi映射 随机置乱 零水印
下载PDF
改进的三维模型检索PCA预处理算法 被引量:3
19
作者 唐勇 沈哲 +1 位作者 吕梦雅 王平 《系统仿真学报》 CAS CSCD 北大核心 2008年第11期2832-2835,2839,共5页
三维模型检索PCA预处理的主轴不确定性和主轴方向不确定性是影响检索结果的直接因素。经过分析PCA基本原理,在K-L变换所得特征值的基础上,引入表面网格信息权重,将权重和特征向量的乘积用于确定主轴,并利用多重权重来确定主轴方向,从而... 三维模型检索PCA预处理的主轴不确定性和主轴方向不确定性是影响检索结果的直接因素。经过分析PCA基本原理,在K-L变换所得特征值的基础上,引入表面网格信息权重,将权重和特征向量的乘积用于确定主轴,并利用多重权重来确定主轴方向,从而削弱不确定性。实验表明,经改进提高了坐标轴归一化的一致性。 展开更多
关键词 三维模型检索 预处理 主元分析 K-L变换
下载PDF
基于主成份分析和支持向量机的PCA-SVM储层识别模型研究 被引量:3
20
作者 王众 张哨楠 +1 位作者 匡建超 罗鑫 《物探化探计算技术》 CAS CSCD 2010年第6期636-640,568,共5页
储层识别是油气勘探开发中所面临的关键问题和难点之一。针对传统储层识别方法预测精度较低这一问题,提出了基于主成份分析和支持向量机的PCA-SVM储层识别模型,较好地解决了传统学习方法在非线性预测中的小样本、过学习、局部极小点等问... 储层识别是油气勘探开发中所面临的关键问题和难点之一。针对传统储层识别方法预测精度较低这一问题,提出了基于主成份分析和支持向量机的PCA-SVM储层识别模型,较好地解决了传统学习方法在非线性预测中的小样本、过学习、局部极小点等问题,同时消除了出入变量之间的多重相关性,减少了输入变量的个数,提高了预测精度和收敛速度。通过对长庆中部气田马五1段储层的实例应用,PCA-SVM模型的预测精度达到100%,优于SVM模型(93.6%)和Fisher判别模型(96.3%)。这表明PCA-SVM模型具有更高的预测精度,为致密储层的准确识别探索了又一新方法。 展开更多
关键词 主成份分析 支持向量机 pca-SVM模型 储层识别
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部