随着集成电路生产工艺的迅速发展,功耗作为芯片质量的重要衡量标准引起了国内外学者越来越多的重视和研究。当晶体管的特征尺寸减小到纳米级时,其泄露电流的增加、工作频率的提高和晶体管门数的攀升极大提高了芯片的功耗。同时,传统的基...随着集成电路生产工艺的迅速发展,功耗作为芯片质量的重要衡量标准引起了国内外学者越来越多的重视和研究。当晶体管的特征尺寸减小到纳米级时,其泄露电流的增加、工作频率的提高和晶体管门数的攀升极大提高了芯片的功耗。同时,传统的基于UPF(Unified Power Format)的低功耗设计流程存在着效率低、可修复性差等缺点。针对以上问题,以14 nm工艺下数字芯片fch_sata_t模块为例,简要介绍了全新的基于CUPF(Constant UPF)的低功耗物理设计流程,利用门控电源和多电源电压等技术对芯片进行低功耗设计。最终,通过Synopsys旗下PrimetimePX提供功耗分析结果,证明了芯片功耗满足设计要求。展开更多
文摘随着集成电路生产工艺的迅速发展,功耗作为芯片质量的重要衡量标准引起了国内外学者越来越多的重视和研究。当晶体管的特征尺寸减小到纳米级时,其泄露电流的增加、工作频率的提高和晶体管门数的攀升极大提高了芯片的功耗。同时,传统的基于UPF(Unified Power Format)的低功耗设计流程存在着效率低、可修复性差等缺点。针对以上问题,以14 nm工艺下数字芯片fch_sata_t模块为例,简要介绍了全新的基于CUPF(Constant UPF)的低功耗物理设计流程,利用门控电源和多电源电压等技术对芯片进行低功耗设计。最终,通过Synopsys旗下PrimetimePX提供功耗分析结果,证明了芯片功耗满足设计要求。