This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is deriv...In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.展开更多
The interpretation of the equilibrium of a solid body floating on the surface of a liquid body is well known as the “Archimedes’ Principle”. Presently, the equilibrium of the solid body is interpreted as the result...The interpretation of the equilibrium of a solid body floating on the surface of a liquid body is well known as the “Archimedes’ Principle”. Presently, the equilibrium of the solid body is interpreted as the result of the concurrence of two mechanical actions which are equivalent and opposite: the “weight” of the body, directed downwards, and the “Archimedes’ force” having a magnitude equivalent to the weight of the volume of liquid displaced by the volume of the body immersed in the liquid, directed upwards. We show arguments proving that this interpretation is not a correct physical interpretation. The same arguments show that a new different interpretation is a correct one. The new interpretation is based on the hypothesis that the “weight” of a body immersed in a body-medium is proportional to the volume of the body immersed in the body-medium and to the difference in density between the matter of the body and the matter of the body-medium. Accordingly, if a body is completely immersed in a body-medium, there is only one mechanical action on the body. This action may be downwards or upwards, or its magnitude may be zero. In this last case, the body is in equilibrium within the body-medium.展开更多
Based on Newton’s third law of motion, we present a different but quite general analysis of Archimedes’ principle. This analysis explains the reduction in apparent weight of a submerged object in all cases, regardle...Based on Newton’s third law of motion, we present a different but quite general analysis of Archimedes’ principle. This analysis explains the reduction in apparent weight of a submerged object in all cases, regardless of its position in the fluid. We also study the case in which the object rests on the bottom of the container where the net hydrostatic force on it is downward, and explain where in this case the reduction in the apparent weight comes from.展开更多
Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculati...Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.展开更多
The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems.The preservation of the qualitative characteristics,such as the maximum principle,in discrete mode...The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems.The preservation of the qualitative characteristics,such as the maximum principle,in discrete model is one of the key requirements.It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D.In this paper we consider how to enforce discrete maximum principle for linear finite element solutions for the linear second-order self-adjoint elliptic equation.First approach is based on repair technique,which is a posteriori correction of the discrete solution.Second method is based on constrained optimization.Numerical tests that include anisotropic cases demonstrate how our method works for problems for which the standard finite element methods produce numerical solutions that violate the discrete maximum principle.展开更多
In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measur...In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion.The control domain is assumed to be convex.Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved.The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金Project supported by the National Natural Science Foundation of China(Nos.11971303 and 11871330)。
文摘In this paper,the static output feedback stabilization for large-scale unstable second-order singular systems is investigated.First,the upper bound of all unstable eigenvalues of second-order singular systems is derived.Then,by using the argument principle,a computable stability criterion is proposed to check the stability of secondorder singular systems.Furthermore,by applying model reduction methods to original systems,a static output feedback design algorithm for stabilizing second-order singular systems is presented.A simulation example is provided to illustrate the effectiveness of the design algorithm.
文摘The interpretation of the equilibrium of a solid body floating on the surface of a liquid body is well known as the “Archimedes’ Principle”. Presently, the equilibrium of the solid body is interpreted as the result of the concurrence of two mechanical actions which are equivalent and opposite: the “weight” of the body, directed downwards, and the “Archimedes’ force” having a magnitude equivalent to the weight of the volume of liquid displaced by the volume of the body immersed in the liquid, directed upwards. We show arguments proving that this interpretation is not a correct physical interpretation. The same arguments show that a new different interpretation is a correct one. The new interpretation is based on the hypothesis that the “weight” of a body immersed in a body-medium is proportional to the volume of the body immersed in the body-medium and to the difference in density between the matter of the body and the matter of the body-medium. Accordingly, if a body is completely immersed in a body-medium, there is only one mechanical action on the body. This action may be downwards or upwards, or its magnitude may be zero. In this last case, the body is in equilibrium within the body-medium.
文摘Based on Newton’s third law of motion, we present a different but quite general analysis of Archimedes’ principle. This analysis explains the reduction in apparent weight of a submerged object in all cases, regardless of its position in the fluid. We also study the case in which the object rests on the bottom of the container where the net hydrostatic force on it is downward, and explain where in this case the reduction in the apparent weight comes from.
文摘Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.
基金the National Nuclear Security Administration of the U.S.Department of Energy at Los Alamos National Laboratory under Contract No.DE-AC52-06NA25396the DOE Office of Science Advanced Scientific Computing Research(ASCR)Program in Applied Mathematics Research.The first author has been supported in part by the Czech Ministry of Education projects MSM 6840770022 and LC06052(Necas Center for Mathematical Modeling).
文摘The maximum principle is a basic qualitative property of the solution of second-order elliptic boundary value problems.The preservation of the qualitative characteristics,such as the maximum principle,in discrete model is one of the key requirements.It is well known that standard linear finite element solution does not satisfy maximum principle on general triangular meshes in 2D.In this paper we consider how to enforce discrete maximum principle for linear finite element solutions for the linear second-order self-adjoint elliptic equation.First approach is based on repair technique,which is a posteriori correction of the discrete solution.Second method is based on constrained optimization.Numerical tests that include anisotropic cases demonstrate how our method works for problems for which the standard finite element methods produce numerical solutions that violate the discrete maximum principle.
文摘In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion.The control domain is assumed to be convex.Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved.The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.