The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials.Two-dimensional(2D)materials are promising functiona...The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials.Two-dimensional(2D)materials are promising functional ink candidates due to their superior properties.However,the majority 2D materials can disperse well only in organic solvents or in surfactant-assisted water solutions,which limits their applications.Herein,we report a lithium(Li)-ion exchange method to improve the dispersity of the Na_(2)W_(4)O_(13) nanosheets in pure water.The Li-ion-exchanged Na_(2)W_(4)0_(13)(Li_(x)Na_(2-x)W_(4)O_(13))nanosheets show highly stable dispersity in water with a zeta potential of-55 mV.Moreover,this aqueous ink can be sprayed on various substrates to obtain a uniform LixNa2_xW4O13 nanosheet film,exhibiting an excellent electrochromic performance.A complementary electrochromic device containing a Li_(x)Na_(2-x)W_(4)O_(13) nanosheet film as an electrochromic layer and Prussian white(PW)as an ion storage layer exhibits a large optical modulation of 75% at 700 nm,a fast switching response of less than 2 s,and outstanding cyclic stability.This Na2W4Oi3-based aqueous ink exhibits considerable potential for fabricating large-scale and flexible electrochromic devices,which would meet the practical application requirements.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.11874036,51872101,51672097,51972124,and 51902115)the National Program for Support of Top-notch Young Professionals,the Program for HUST Academic Frontier Youth Team,the Fundamental Research Funds for the Central Universities(HUST:2017KFXKJC001 and 2018KFYXKJC025)+2 种基金the Guangdong Province Key Area R&D Program(No.2019B010940001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)Basic Research Project of Shenzhen,China(No.JCYJ20170412171430026).
文摘The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials.Two-dimensional(2D)materials are promising functional ink candidates due to their superior properties.However,the majority 2D materials can disperse well only in organic solvents or in surfactant-assisted water solutions,which limits their applications.Herein,we report a lithium(Li)-ion exchange method to improve the dispersity of the Na_(2)W_(4)O_(13) nanosheets in pure water.The Li-ion-exchanged Na_(2)W_(4)0_(13)(Li_(x)Na_(2-x)W_(4)O_(13))nanosheets show highly stable dispersity in water with a zeta potential of-55 mV.Moreover,this aqueous ink can be sprayed on various substrates to obtain a uniform LixNa2_xW4O13 nanosheet film,exhibiting an excellent electrochromic performance.A complementary electrochromic device containing a Li_(x)Na_(2-x)W_(4)O_(13) nanosheet film as an electrochromic layer and Prussian white(PW)as an ion storage layer exhibits a large optical modulation of 75% at 700 nm,a fast switching response of less than 2 s,and outstanding cyclic stability.This Na2W4Oi3-based aqueous ink exhibits considerable potential for fabricating large-scale and flexible electrochromic devices,which would meet the practical application requirements.