Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-de...The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics.展开更多
Objective:To use three-dimensional(3D)printing technology to prepare Dashanzha Wan.Methods:The standard formula proportion of Dashanzha Wan was used to prepare printable materials(normally called the ink)for 3D printi...Objective:To use three-dimensional(3D)printing technology to prepare Dashanzha Wan.Methods:The standard formula proportion of Dashanzha Wan was used to prepare printable materials(normally called the ink)for 3D printing,and different doses and shapes of Dashanzha Wan were prepared.Then,the rheological properties,texture characteristics,scanning electron microscopy,and content of ursolic acid were evaluated.Results:Dashanzha Wan ink showed good shear thinning properties,which is very suitable for 3D printing.The printed sample had a beautiful and regular shape with high resolution.Meanwhile,ursolic acid content in 3D-printed Dashanzha Wan aligned with the ursolic acid content shown in the Pharmacopoeia of the People's Republic of China 2020.Conclusion:The 3D-printed Dashanzha Wan has a better texture,and can be shaped into various shapes according to individual needs,which would increase patients’interest when taking medicine.Moreover,3D printing of Dashanzha Wan could be easily integrated into the digital life system,enabling online customization or use at home.This study reveals that 3D printing technology is a promising method for the production of traditional Chinese medicine with personalized appearance,dosage,and texture,which is suitable for a broader population.展开更多
Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac...Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.展开更多
Hepatocellular carcinoma(HCC)constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths.Currently,treatment selection is based on the stage of the disease.Emerg...Hepatocellular carcinoma(HCC)constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths.Currently,treatment selection is based on the stage of the disease.Emerging fields such as three-dimensional(3D)printing,3D bioprinting,artificial intelligence(AI),and machine learning(ML)could lead to evidence-based,individualized management of HCC.In this review,we comprehensively report the current applications of 3D printing,3D bioprinting,and AI/ML-based models in HCC management;we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them,and finally,we discuss the opportunities that arise from these applications.Notably,regarding 3D printing and bioprinting-related challenges,we elaborate on cost and cost-effectiveness,cell sourcing,cell viability,safety,accessibility,regulation,and legal and ethical concerns.Similarly,regarding AI/ML-related challenges,we elaborate on intellectual property,liability,intrinsic biases,data protection,cybersecurity,ethical challenges,and transparency.Our findings show that AI and 3D printing applications in HCC management and healthcare,in general,are steadily expanding;thus,these technologies will be integrated into the clinical setting sooner or later.Therefore,we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.展开更多
BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising onco...BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising oncological outcomes.However,anatomical variations in the branches of the inferior mesenteric artery(IMA)and LCA present significant surgical challenges.In this study,we present our novel three dimensional(3D)printed IMA model designed to facilitate preoperative rehearsal and intraoperative navigation to analyze its impact on surgical safety.AIM To investigate the effect of 3D IMA models on preserving the LCA during RC surgery.METHODS We retrospectively collected clinical dates from patients with RC who underwent laparoscopic radical resection from January 2022 to May 2024 at Fuyang People’s Hospital.Patients were divided into the 3D printing and control groups for sta-tistical analysis of perioperative characteristics.RESULTS The 3D printing observation group comprised of 72 patients,while the control group comprised 68 patients.The operation time(174.5±38.2 minutes vs 198.5±49.6 minutes,P=0.002),intraoperative blood loss(43.9±31.3 mL vs 58.2±30.8 mL,P=0.005),duration of hospitalization(13.1±3.1 days vs 15.9±5.6 days,P<0.001),postoperative recovery time(8.6±2.6 days vs 10.5±4.9 days,P=0.007),and the postoperative complication rate(P<0.05)were all significantly lower in the observation group.CONCLUSION Utilization of a 3D-printed IMA model in laparoscopic radical resection of RC can assist surgeons in understanding the LCA anatomy preoperatively,thereby reducing intraoperative bleeding and shortening operating time,demonstrating better clinical application potential.展开更多
BACKGROUND With the increasing complexity of surgical interventions performed in orthopaedic trauma surgery and the improving technologies used in threedimensional(3D)printing,there has been an increased interest in t...BACKGROUND With the increasing complexity of surgical interventions performed in orthopaedic trauma surgery and the improving technologies used in threedimensional(3D)printing,there has been an increased interest in the concept.It has been shown that 3D models allow surgeons to better visualise anatomy,aid in planning and performing complex surgery.It is however not clear how best to utilise the technique and whether this results in better outcomes.AIM To evaluate the effect of 3D printing used in pre-operative planning in orthopaedic trauma surgery on clinical outcomes.METHODS We performed a comprehensive systematic review of the literature and a metaanalysis.Medline,Ovid and Embase were searched from inception to February 8,2018.Randomised controlled trials,case-control studies,cohort studies and case series of five patients or more were included across any area of orthopaedic trauma.The primary outcomes were operation time,intra-operative blood loss and fluoroscopy used.RESULTS Seventeen studies(922 patients)met our inclusion criteria and were reviewed.The use of 3D printing across all specialties in orthopaedic trauma surgery demonstrated an overall reduction in operation time of 19.85%[95%confidence intervals(CI):(-22.99,-16.71)],intra-operative blood loss of 25.73%[95%CI:(-31.07,-20.40)],and number of times fluoroscopy was used by 23.80%[95%CI:(-38.49,-9.10)].CONCLUSION Our results suggest that the use of 3D printing in pre-operative planning in orthopaedic trauma reduces operative time,intraoperative blood loss and the number of times fluoroscopy is used.展开更多
This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to De...This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to December 2016),in which the guiding template printed by the three-dimensional printing technique was used for the insertion of sacroiliac screws of patients with posterior ring injuries of pelvis,was performed.Totally,4 males and 3 females were included in template group,aged from 38to 65years old (mean 50.86±8.90).Of them,5 had sacral fractures (3 with Denis type Ⅰ and 2 with type Ⅱ)and 2 the separation of sacroiliac joint.Guiding templates were firstly made by the three-dimensional printing technique based on the pre-operative CT data. Surgical operations for the stabilization of pelvic ring by applying the guiding templates were carried out.A group of 8 patients with sacroiliac injuries treated by percutaneous sacroiliac screws were analyzed as a control group retrospectively.The time of each screw insertion,volume of intra-operative blood loss,and the exposure to X ray were analyzed and the Matta's radiological criteria were used to evaluate the reduction quality.The Majeed score was used to evaluate postoperative living quality.The visual analogue scale (VAS)was applied at different time points to judge pain relief of coccydynia.All the 7 patients in the template group were closely followed up radiographically and clinically for 14 to 20 months,mean (16.57±2.44)months.Totally 9 sacroiliac screws for the S 1 and S2 vertebra were inserted in the 7 patients.The time length for each screw insertion ranged from 450 to 870 s,mean (690.56±135.68)s,and the number of times of exposure to X ray were 4 to 8,mean (5.78±1.20).The intra-operative blood loss ranged from 45to 120 mL,mean (75±23.32)mL.According to Matta's radiology criteria,the fracture and dislocation reduction were excellent in 6cases and good in 1.The pre-operative VAS score ranged from 5.2 to 8.1,mean (7.13±1.00).The average one-week/six-month post-operative VAS was (5.33±0.78)and (1.33±0.66),respectively (P<0.05 when compared with pre-operative VAS).The 12-month post-operative Majeed score ranged from 86 to 92,mean (90.29±2.21).The three-dimensional printed guiding template for sacroiliac screw insertion,which could significantly shorten the operation time,provide a satisfied outcome of the stabilization of the pelvic ring,and protect doctors and patients from X-ray exposure,might be a practical and valuable new clinical technique.展开更多
A new type of implantable drug delivery devices ( DDD ) with complicated architectures were fubricated by three-dimensional printing technique, employing levofloxacin (LVFX) as a model drug. Processing parameters...A new type of implantable drug delivery devices ( DDD ) with complicated architectures were fubricated by three-dimensional printing technique, employing levofloxacin (LVFX) as a model drug. Processing parameters were optimized in riew of the layer thickness, spucing between printed lines, flow rate of liquid binder and the fast axis speed. The prepared DDD prototype consists of a double-layer structure, of which the upper region is a reservoir system and the lower region is a matrix one. The in vitro release test revealed that LVFX was released in a dual-puse pattern. This DDD may present a new strategy for the prophylaxis and treatment of diseases such as bone infection in the near future.展开更多
After the publication of this work,1 the authors noticed and confirmed that the Funding Information was mistakenly omitted from the article.The statement“This study was supported by grants from the National Natural S...After the publication of this work,1 the authors noticed and confirmed that the Funding Information was mistakenly omitted from the article.The statement“This study was supported by grants from the National Natural Science Foundation of China,grant no.81370041,81471760,81671655,the Outstanding Clinical Discipline Project of Shanghai Pudong,grant no.PWYgy2018-04.The authors declare that they have no conflicts of interest.”should be included in the Funding information section of the paper which is missing.We apologize for the error.展开更多
Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur...Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.展开更多
Introduction In recent years,three-dimensional printing(3DP),an additive manufacturing process,has gained widespread clinical application,and 3DP has been considered as the third industrial revolution.1 In its early i...Introduction In recent years,three-dimensional printing(3DP),an additive manufacturing process,has gained widespread clinical application,and 3DP has been considered as the third industrial revolution.1 In its early introduction in the 1980s,3DP served as a software-controlled technology that converted computer-aided-design(CAD)data into a physical object via a single process.By depositing multiple two-dimensional cross-sections one above the other,3DP can now be used to build arbitrarily complex geometries and patient-specific constructs using the patient’s imaging data.Till date,computed tomography has been the main imaging data source for 3DP owing to its excellent spatial resolution.Furthermore,current 3D printers have enabled bedside on-demand fabrication of medical products in hospitals.New materials including polymers,ceramics,biomaterials,and metals have been developed for such applications over the last few decades.Medical fields that employ 3DP technologies have also expanded,such as tissue engineering,regenerative medicine,pharmaceutics,and medical models and devices.2 The market for additive manufacturing is expected to surpass$20 billion in the global industry by the end of the 2020.3 Although the use of 3DP technology in interventional medicine is still relatively new,advancements are occurring within this discipline at a rapid rate.Different 3DP technologies,materials,and clinical applications relevant to the interventional field are discussed in this article.展开更多
BACKGROUND Lateral facial clefts are atypical with a low incidence in the facial cleft spectrum.With the development of ultrasonography(US)prenatal screening,such facial malformations can be detected and diagnosed pre...BACKGROUND Lateral facial clefts are atypical with a low incidence in the facial cleft spectrum.With the development of ultrasonography(US)prenatal screening,such facial malformations can be detected and diagnosed prenatally rather than at birth.Although three-dimensional US(3DUS)can render the fetus'face via 3D reconstruction,the 3D images are displayed on two-dimensional screens without field depth,which impedes the understanding of untrained individuals.In contrast,a 3D-printed model of the fetus'face helps both parents and doctors develop a more comprehensive understanding of the facial malformation by creating more interactive aspects.Herein,we present an isolated lateral facial cleft case that was diagnosed via US combined with a 3D-printed model.CASE SUMMARY A 31-year-old G2P1 patient presented for routine prenatal screening at the 22nd wk of gestation.The coronal nostril-lip section of two-dimensional US(2DUS)demonstrated that the fetus'bilateral oral commissures were asymmetrical,and left oral commissure was abnormally wide.The left oblique-coronal section showed a cleft at the left oral commissure which extended to the left cheek.The results of 3DUS confirmed the cleft.Furthermore,we created a model of the fetal face using 3D printing technology,which clearly presented facial malformations.The fetus was diagnosed with a left lateral facial cleft,which was categorized as a No.7 facial cleft according to the Tessier facial cleft classification.The parents terminated the pregnancy at the 24th wk of gestation after parental counseling.CONCLUSION In the diagnostic course of the current case,in addition to the traditional application of 2D and 3DUS,we created a 3D-printed model of the fetus,which enhanced diagnostic evidence,benefited the education of junior doctors,improved parental counseling,and had the potential to guide surgical planning.展开更多
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy...The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.展开更多
BACKGROUND A 63-year-old female was diagnosed with acute Stanford type A aortic dissection.The patient had pain in the chest and back for 1 wk.The computed tomography angiography(CTA)showed Stanford type A aortic diss...BACKGROUND A 63-year-old female was diagnosed with acute Stanford type A aortic dissection.The patient had pain in the chest and back for 1 wk.The computed tomography angiography(CTA)showed Stanford type A aortic dissection(Myla type III aortic arch).The intimal tear was located at the top of the aortic arch and retrograded to the ascending aorta.CASE SUMMARY Preoperatively,a three-dimensional(3D)-printed model of the aortic arch was made according to CTA data.Then,under the guidance of the 3D-printed aortic model,a pre-fenestrated stent-graft was customized,and the diameter of the stent-graft was reduced intraoperatively by surgeons.3D printing,triple prefenestration,and reduced diameter techniques were used during the surgery.The CTA examinations were performed at the 3rd mo and 1st year after the surgery;the results showed that the aortic dissection was repaired without endoleak,and all three branches of the aortic arch remained unobstructed.CONCLUSION Applying the triple pre-fenestration technique for aortic arch lesions was feasible and minimally invasive in our case.The technique provides a new avenue for thoracic endovascular aortic repair of Stanford type A aortic dissection.展开更多
Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designe...Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.展开更多
Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emp...Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emphasis on its application in the field of medical devices and prospects for contribution.展开更多
doi:10.4103/1673-5374.280332 In the article titled“Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury”published on pages...doi:10.4103/1673-5374.280332 In the article titled“Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury”published on pages 959–968,Issue 5,Volume 15 of Neural Regeneration Research,(Jiang et al.,2020)the“author affiliations”are written incorrectly.The correct“author affiliations”are:“Ji-Peng Jiang1,#,Xiao-Yin Liu1,2,#,Fei Zhao1,#,Xiang Zhu3,Xiao-Yin Li1,Xue-Gang Niu4,Zi-Tong Yao1,Chen Dai1,Hui-You Xu1,Ke Ma1,Xu-Yi Chen1,*,Sai Zhang1,*1 Tianjin Key Laboratory of Neurotrauma Repair,Institute of Traumatic Brain Injury and Neuroscience,Center for Neurology and Neurosurgery of Chinese People’s Armed Police Force(PAP)Characteristic Medical Center,Tianjin,China;2 Tianjin Medical University,Tianjin,China;3 Department of Neurology,Luoyang First Hospital of Traditional Chinese Medicine,Luoyang,Henan Province,China;4 Department of Neurosurgery,Fourth Central Hospital of Tianjin,Tianjin,China.”展开更多
As a promising manufacturing technology,three-dimensional(3D)printing technology is widely used in the medical field.In the treatment of osteoarticular defects,the emergence of 3D printing technology provides a new op...As a promising manufacturing technology,three-dimensional(3D)printing technology is widely used in the medical field.In the treatment of osteoarticular defects,the emergence of 3D printing technology provides a new option for the reconstruction of functional articular surfaces.At present,3D printing technology has been used in clinical applications such as models,patient-specific instruments(PSIs),and customized implants to treat joint defects caused by trauma,sports injury,and tumors.This review summarizes the application status of 3D printing technology in the treatment of osteoarticular defects and discusses its advantages,disadvantages,and possible future research strategies.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金supported by the General Research Fund(17200222,17208919,17204020)of the Research Grants Council of Hong Kongthe National Natural Science Foundation of China/Research Grants Council Joint Research Scheme(N_HKU743/22)the Seed Fund for Basic Research(201910159047,202111159097)of the University Research Committee(URC),The University of Hong Kong。
文摘The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics.
基金supported by Seed Funding of the Beijing University of Chinese Medicine(90011451310034).
文摘Objective:To use three-dimensional(3D)printing technology to prepare Dashanzha Wan.Methods:The standard formula proportion of Dashanzha Wan was used to prepare printable materials(normally called the ink)for 3D printing,and different doses and shapes of Dashanzha Wan were prepared.Then,the rheological properties,texture characteristics,scanning electron microscopy,and content of ursolic acid were evaluated.Results:Dashanzha Wan ink showed good shear thinning properties,which is very suitable for 3D printing.The printed sample had a beautiful and regular shape with high resolution.Meanwhile,ursolic acid content in 3D-printed Dashanzha Wan aligned with the ursolic acid content shown in the Pharmacopoeia of the People's Republic of China 2020.Conclusion:The 3D-printed Dashanzha Wan has a better texture,and can be shaped into various shapes according to individual needs,which would increase patients’interest when taking medicine.Moreover,3D printing of Dashanzha Wan could be easily integrated into the digital life system,enabling online customization or use at home.This study reveals that 3D printing technology is a promising method for the production of traditional Chinese medicine with personalized appearance,dosage,and texture,which is suitable for a broader population.
基金funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-Class Research Center Program:Advanced Digital Technologies(Contract No.075-15-2022-311,dated 20.04.2022).
文摘Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.
文摘Hepatocellular carcinoma(HCC)constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths.Currently,treatment selection is based on the stage of the disease.Emerging fields such as three-dimensional(3D)printing,3D bioprinting,artificial intelligence(AI),and machine learning(ML)could lead to evidence-based,individualized management of HCC.In this review,we comprehensively report the current applications of 3D printing,3D bioprinting,and AI/ML-based models in HCC management;we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them,and finally,we discuss the opportunities that arise from these applications.Notably,regarding 3D printing and bioprinting-related challenges,we elaborate on cost and cost-effectiveness,cell sourcing,cell viability,safety,accessibility,regulation,and legal and ethical concerns.Similarly,regarding AI/ML-related challenges,we elaborate on intellectual property,liability,intrinsic biases,data protection,cybersecurity,ethical challenges,and transparency.Our findings show that AI and 3D printing applications in HCC management and healthcare,in general,are steadily expanding;thus,these technologies will be integrated into the clinical setting sooner or later.Therefore,we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
基金Supported by the Health Commission of Fuyang City,No.FY2021-18Bengbu Medical College of Bengbu City,No.2023byzd215the Health Commission Anhui Provence,No.AHWJ2023BAa20164.
文摘BACKGROUND Prior studies have shown that preserving the left colic artery(LCA)during laparo-scopic radical resection for rectal cancer(RC)can reduce the occurrence of anasto-motic leakage(AL),without compromising oncological outcomes.However,anatomical variations in the branches of the inferior mesenteric artery(IMA)and LCA present significant surgical challenges.In this study,we present our novel three dimensional(3D)printed IMA model designed to facilitate preoperative rehearsal and intraoperative navigation to analyze its impact on surgical safety.AIM To investigate the effect of 3D IMA models on preserving the LCA during RC surgery.METHODS We retrospectively collected clinical dates from patients with RC who underwent laparoscopic radical resection from January 2022 to May 2024 at Fuyang People’s Hospital.Patients were divided into the 3D printing and control groups for sta-tistical analysis of perioperative characteristics.RESULTS The 3D printing observation group comprised of 72 patients,while the control group comprised 68 patients.The operation time(174.5±38.2 minutes vs 198.5±49.6 minutes,P=0.002),intraoperative blood loss(43.9±31.3 mL vs 58.2±30.8 mL,P=0.005),duration of hospitalization(13.1±3.1 days vs 15.9±5.6 days,P<0.001),postoperative recovery time(8.6±2.6 days vs 10.5±4.9 days,P=0.007),and the postoperative complication rate(P<0.05)were all significantly lower in the observation group.CONCLUSION Utilization of a 3D-printed IMA model in laparoscopic radical resection of RC can assist surgeons in understanding the LCA anatomy preoperatively,thereby reducing intraoperative bleeding and shortening operating time,demonstrating better clinical application potential.
文摘BACKGROUND With the increasing complexity of surgical interventions performed in orthopaedic trauma surgery and the improving technologies used in threedimensional(3D)printing,there has been an increased interest in the concept.It has been shown that 3D models allow surgeons to better visualise anatomy,aid in planning and performing complex surgery.It is however not clear how best to utilise the technique and whether this results in better outcomes.AIM To evaluate the effect of 3D printing used in pre-operative planning in orthopaedic trauma surgery on clinical outcomes.METHODS We performed a comprehensive systematic review of the literature and a metaanalysis.Medline,Ovid and Embase were searched from inception to February 8,2018.Randomised controlled trials,case-control studies,cohort studies and case series of five patients or more were included across any area of orthopaedic trauma.The primary outcomes were operation time,intra-operative blood loss and fluoroscopy used.RESULTS Seventeen studies(922 patients)met our inclusion criteria and were reviewed.The use of 3D printing across all specialties in orthopaedic trauma surgery demonstrated an overall reduction in operation time of 19.85%[95%confidence intervals(CI):(-22.99,-16.71)],intra-operative blood loss of 25.73%[95%CI:(-31.07,-20.40)],and number of times fluoroscopy was used by 23.80%[95%CI:(-38.49,-9.10)].CONCLUSION Our results suggest that the use of 3D printing in pre-operative planning in orthopaedic trauma reduces operative time,intraoperative blood loss and the number of times fluoroscopy is used.
文摘This study is aimed to explore the clinical application of the guiding template designed by three-dimensional printing data for the insertion of sacroiliac screws.A retrospective study of 7 cases (from July 2016 to December 2016),in which the guiding template printed by the three-dimensional printing technique was used for the insertion of sacroiliac screws of patients with posterior ring injuries of pelvis,was performed.Totally,4 males and 3 females were included in template group,aged from 38to 65years old (mean 50.86±8.90).Of them,5 had sacral fractures (3 with Denis type Ⅰ and 2 with type Ⅱ)and 2 the separation of sacroiliac joint.Guiding templates were firstly made by the three-dimensional printing technique based on the pre-operative CT data. Surgical operations for the stabilization of pelvic ring by applying the guiding templates were carried out.A group of 8 patients with sacroiliac injuries treated by percutaneous sacroiliac screws were analyzed as a control group retrospectively.The time of each screw insertion,volume of intra-operative blood loss,and the exposure to X ray were analyzed and the Matta's radiological criteria were used to evaluate the reduction quality.The Majeed score was used to evaluate postoperative living quality.The visual analogue scale (VAS)was applied at different time points to judge pain relief of coccydynia.All the 7 patients in the template group were closely followed up radiographically and clinically for 14 to 20 months,mean (16.57±2.44)months.Totally 9 sacroiliac screws for the S 1 and S2 vertebra were inserted in the 7 patients.The time length for each screw insertion ranged from 450 to 870 s,mean (690.56±135.68)s,and the number of times of exposure to X ray were 4 to 8,mean (5.78±1.20).The intra-operative blood loss ranged from 45to 120 mL,mean (75±23.32)mL.According to Matta's radiology criteria,the fracture and dislocation reduction were excellent in 6cases and good in 1.The pre-operative VAS score ranged from 5.2 to 8.1,mean (7.13±1.00).The average one-week/six-month post-operative VAS was (5.33±0.78)and (1.33±0.66),respectively (P<0.05 when compared with pre-operative VAS).The 12-month post-operative Majeed score ranged from 86 to 92,mean (90.29±2.21).The three-dimensional printed guiding template for sacroiliac screw insertion,which could significantly shorten the operation time,provide a satisfied outcome of the stabilization of the pelvic ring,and protect doctors and patients from X-ray exposure,might be a practical and valuable new clinical technique.
文摘A new type of implantable drug delivery devices ( DDD ) with complicated architectures were fubricated by three-dimensional printing technique, employing levofloxacin (LVFX) as a model drug. Processing parameters were optimized in riew of the layer thickness, spucing between printed lines, flow rate of liquid binder and the fast axis speed. The prepared DDD prototype consists of a double-layer structure, of which the upper region is a reservoir system and the lower region is a matrix one. The in vitro release test revealed that LVFX was released in a dual-puse pattern. This DDD may present a new strategy for the prophylaxis and treatment of diseases such as bone infection in the near future.
文摘After the publication of this work,1 the authors noticed and confirmed that the Funding Information was mistakenly omitted from the article.The statement“This study was supported by grants from the National Natural Science Foundation of China,grant no.81370041,81471760,81671655,the Outstanding Clinical Discipline Project of Shanghai Pudong,grant no.PWYgy2018-04.The authors declare that they have no conflicts of interest.”should be included in the Funding information section of the paper which is missing.We apologize for the error.
基金supported in part by the General Program of Natural Science Foundation of Hubei Province,China(Grant No.2020CFB548)a Project in 2021 of Science and Technology Support Plan of Guizhou Province,China(Grant No.202158413293820389).
文摘Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.
文摘Introduction In recent years,three-dimensional printing(3DP),an additive manufacturing process,has gained widespread clinical application,and 3DP has been considered as the third industrial revolution.1 In its early introduction in the 1980s,3DP served as a software-controlled technology that converted computer-aided-design(CAD)data into a physical object via a single process.By depositing multiple two-dimensional cross-sections one above the other,3DP can now be used to build arbitrarily complex geometries and patient-specific constructs using the patient’s imaging data.Till date,computed tomography has been the main imaging data source for 3DP owing to its excellent spatial resolution.Furthermore,current 3D printers have enabled bedside on-demand fabrication of medical products in hospitals.New materials including polymers,ceramics,biomaterials,and metals have been developed for such applications over the last few decades.Medical fields that employ 3DP technologies have also expanded,such as tissue engineering,regenerative medicine,pharmaceutics,and medical models and devices.2 The market for additive manufacturing is expected to surpass$20 billion in the global industry by the end of the 2020.3 Although the use of 3DP technology in interventional medicine is still relatively new,advancements are occurring within this discipline at a rapid rate.Different 3DP technologies,materials,and clinical applications relevant to the interventional field are discussed in this article.
文摘BACKGROUND Lateral facial clefts are atypical with a low incidence in the facial cleft spectrum.With the development of ultrasonography(US)prenatal screening,such facial malformations can be detected and diagnosed prenatally rather than at birth.Although three-dimensional US(3DUS)can render the fetus'face via 3D reconstruction,the 3D images are displayed on two-dimensional screens without field depth,which impedes the understanding of untrained individuals.In contrast,a 3D-printed model of the fetus'face helps both parents and doctors develop a more comprehensive understanding of the facial malformation by creating more interactive aspects.Herein,we present an isolated lateral facial cleft case that was diagnosed via US combined with a 3D-printed model.CASE SUMMARY A 31-year-old G2P1 patient presented for routine prenatal screening at the 22nd wk of gestation.The coronal nostril-lip section of two-dimensional US(2DUS)demonstrated that the fetus'bilateral oral commissures were asymmetrical,and left oral commissure was abnormally wide.The left oblique-coronal section showed a cleft at the left oral commissure which extended to the left cheek.The results of 3DUS confirmed the cleft.Furthermore,we created a model of the fetal face using 3D printing technology,which clearly presented facial malformations.The fetus was diagnosed with a left lateral facial cleft,which was categorized as a No.7 facial cleft according to the Tessier facial cleft classification.The parents terminated the pregnancy at the 24th wk of gestation after parental counseling.CONCLUSION In the diagnostic course of the current case,in addition to the traditional application of 2D and 3DUS,we created a 3D-printed model of the fetus,which enhanced diagnostic evidence,benefited the education of junior doctors,improved parental counseling,and had the potential to guide surgical planning.
基金We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grants 51374213 and 51674251), National Natural Science Fund for Distinguished Young Scholars of China (Grant 51125017), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant 51421003), Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant PAPD 2014).
文摘The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.
基金Jiangsu Provincial Medical Youth Talent Foundation,No.QXRC201621Outstanding Youth Project supported by Nanjing Medical Science and Technology Development Foundation,No.JQX17003and Social Development Program of Jiangsu Province,No.BE2019604.
文摘BACKGROUND A 63-year-old female was diagnosed with acute Stanford type A aortic dissection.The patient had pain in the chest and back for 1 wk.The computed tomography angiography(CTA)showed Stanford type A aortic dissection(Myla type III aortic arch).The intimal tear was located at the top of the aortic arch and retrograded to the ascending aorta.CASE SUMMARY Preoperatively,a three-dimensional(3D)-printed model of the aortic arch was made according to CTA data.Then,under the guidance of the 3D-printed aortic model,a pre-fenestrated stent-graft was customized,and the diameter of the stent-graft was reduced intraoperatively by surgeons.3D printing,triple prefenestration,and reduced diameter techniques were used during the surgery.The CTA examinations were performed at the 3rd mo and 1st year after the surgery;the results showed that the aortic dissection was repaired without endoleak,and all three branches of the aortic arch remained unobstructed.CONCLUSION Applying the triple pre-fenestration technique for aortic arch lesions was feasible and minimally invasive in our case.The technique provides a new avenue for thoracic endovascular aortic repair of Stanford type A aortic dissection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21103194,51506205,and 21673243)the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2014A010106018 and 2013A011401011)+3 种基金the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China(Grant No.2014B050505015)the Special Support Program of Guangdong Province,China(Grant No.2014TQ01N610)the Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(Grant No.y307p81001)the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province,China(Grant No.2014B090904071)
文摘Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.
文摘Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emphasis on its application in the field of medical devices and prospects for contribution.
文摘doi:10.4103/1673-5374.280332 In the article titled“Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury”published on pages 959–968,Issue 5,Volume 15 of Neural Regeneration Research,(Jiang et al.,2020)the“author affiliations”are written incorrectly.The correct“author affiliations”are:“Ji-Peng Jiang1,#,Xiao-Yin Liu1,2,#,Fei Zhao1,#,Xiang Zhu3,Xiao-Yin Li1,Xue-Gang Niu4,Zi-Tong Yao1,Chen Dai1,Hui-You Xu1,Ke Ma1,Xu-Yi Chen1,*,Sai Zhang1,*1 Tianjin Key Laboratory of Neurotrauma Repair,Institute of Traumatic Brain Injury and Neuroscience,Center for Neurology and Neurosurgery of Chinese People’s Armed Police Force(PAP)Characteristic Medical Center,Tianjin,China;2 Tianjin Medical University,Tianjin,China;3 Department of Neurology,Luoyang First Hospital of Traditional Chinese Medicine,Luoyang,Henan Province,China;4 Department of Neurosurgery,Fourth Central Hospital of Tianjin,Tianjin,China.”
基金the National Key R&D Program of China(No.2019YFB1706900).
文摘As a promising manufacturing technology,three-dimensional(3D)printing technology is widely used in the medical field.In the treatment of osteoarticular defects,the emergence of 3D printing technology provides a new option for the reconstruction of functional articular surfaces.At present,3D printing technology has been used in clinical applications such as models,patient-specific instruments(PSIs),and customized implants to treat joint defects caused by trauma,sports injury,and tumors.This review summarizes the application status of 3D printing technology in the treatment of osteoarticular defects and discusses its advantages,disadvantages,and possible future research strategies.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.