Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obta...Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.展开更多
A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calcula...A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calculation.According to the requirement of airport object detection,the model obtains temporal and spatial semantic rules from the uncompressed model.These spatial semantic rules are added to the model after parameter compression to assist the detection.The rules can improve the accuracy of the detection model in order to make up for the loss caused by parameter compression.The experiments show that the effect of the novel compression detection model is no worse than that of the uncompressed original model.Even some of the original model false detection can be eliminated through the prior knowledge.展开更多
SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From th...SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved.展开更多
The attack graph methodology can be used to identify the potential attack paths that an attack can propagate. A risk assessment model based on Bayesian attack graph is presented in this paper. Firstly, attack graphs a...The attack graph methodology can be used to identify the potential attack paths that an attack can propagate. A risk assessment model based on Bayesian attack graph is presented in this paper. Firstly, attack graphs are generated by the MULVAL(Multi-host, Multistage Vulnerability Analysis) tool according to sufficient information of vulnerabilities, network configurations and host connectivity on networks. Secondly, the probabilistic attack graph is established according to the causal relationships among sophisticated multi-stage attacks by using Bayesian Networks. The probability of successful exploits is calculated by combining index of the Common Vulnerability Scoring System, and the static security risk is assessed by applying local conditional probability distribution tables of the attribute nodes. Finally, the overall security risk in a small network scenario is assessed. Experimental results demonstrate our work can deduce attack intention and potential attack paths effectively, and provide effective guidance on how to choose the optimal security hardening strategy.展开更多
This study proposes some results in classifying by Bayesian method. There are upper and lowerbounds of the Bayes error as well as its determination in case of one dimension and multidimensions. Based on the proposals ...This study proposes some results in classifying by Bayesian method. There are upper and lowerbounds of the Bayes error as well as its determination in case of one dimension and multidimensions. Based on the proposals for estimating of probability density functions, calculatingthe Bayes error and determining the prior probability, we establish an algorithm to evaluateability of customers to pay debts at banks. This algorithm has been performed by the Matlabprocedure that can be applied well with real data. The proposed algorithm is tested by the realapplication at a bank in Viet Nam that obtains the best results in comparing with the existingapproaches.展开更多
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.
文摘A novel deep neural network compression model for airport object detection has been presented.This novel model aims at disadvantages of deep neural network,i.e.the complexity of the model and the great cost of calculation.According to the requirement of airport object detection,the model obtains temporal and spatial semantic rules from the uncompressed model.These spatial semantic rules are added to the model after parameter compression to assist the detection.The rules can improve the accuracy of the detection model in order to make up for the loss caused by parameter compression.The experiments show that the effect of the novel compression detection model is no worse than that of the uncompressed original model.Even some of the original model false detection can be eliminated through the prior knowledge.
文摘SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved.
基金Supported by the National Natural Science Foundation of China(61373176)the Natural Science Foundation of Shaanxi Province of China(2015JQ7278)the Scientific Research Plan Projects of Shaanxi Educational Committee(17JK0304,14JK1693)
文摘The attack graph methodology can be used to identify the potential attack paths that an attack can propagate. A risk assessment model based on Bayesian attack graph is presented in this paper. Firstly, attack graphs are generated by the MULVAL(Multi-host, Multistage Vulnerability Analysis) tool according to sufficient information of vulnerabilities, network configurations and host connectivity on networks. Secondly, the probabilistic attack graph is established according to the causal relationships among sophisticated multi-stage attacks by using Bayesian Networks. The probability of successful exploits is calculated by combining index of the Common Vulnerability Scoring System, and the static security risk is assessed by applying local conditional probability distribution tables of the attribute nodes. Finally, the overall security risk in a small network scenario is assessed. Experimental results demonstrate our work can deduce attack intention and potential attack paths effectively, and provide effective guidance on how to choose the optimal security hardening strategy.
文摘This study proposes some results in classifying by Bayesian method. There are upper and lowerbounds of the Bayes error as well as its determination in case of one dimension and multidimensions. Based on the proposals for estimating of probability density functions, calculatingthe Bayes error and determining the prior probability, we establish an algorithm to evaluateability of customers to pay debts at banks. This algorithm has been performed by the Matlabprocedure that can be applied well with real data. The proposed algorithm is tested by the realapplication at a bank in Viet Nam that obtains the best results in comparing with the existingapproaches.