期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid[emim][Tf2N] 被引量:2
1
作者 Lan Li Xiaoting Huang +3 位作者 Quanda Jiang Luyue Xia Jiawei Wang Ning Ai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期721-732,共12页
Using the ionic liquid[emim][Tf2N]as a physical solvent,it was found by Aspen Plus simulation that it was possible to attempt to capture CO2 from the flue gas discharged from the coal-fired unit of the power plant.Usi... Using the ionic liquid[emim][Tf2N]as a physical solvent,it was found by Aspen Plus simulation that it was possible to attempt to capture CO2 from the flue gas discharged from the coal-fired unit of the power plant.Using the combination of model calculation and experimental determination,the density,isostatic heat capacity,viscosity,vapor pressure,thermal conductivity,surface tension and solubility of[emim][Tf2N]were obtained.Based on the NRTL model,the Henry coefficient and NRTL binary interaction parameters of CO2 dissolved in[emim][Tf2N]were obtained by correlating[emim][Tf2N]with the gas–liquid equilibrium data of CO2.Firstly,the calculated relevant data is imported into Aspen Plus,and the whole process model of the ionic liquid absorption process is established.Then the absorption process is optimized according to the temperature distribution in the absorption tower to obtain a new absorption process.Finally,the density,constant pressure heat capacity,surface tension,thermal conductivity,and viscosity of[emim][Tf2N]were changed to investigate the effect of ionic liquid properties on process energy consumption,solvent circulation and heat exchanger design.The results showed that based on the composition of the inlet gas stream to the absorbers,CO2 with a capture rate of 90%and a mass purity higher than 99.5%was captured.These results indicate that the[emim][Tf2N]could be used as a physical solvent for CO2 capture from coal-fired units.In addition,the results will provide a theoretical basis for the design of new ionic liquids for CO2 capture. 展开更多
关键词 Ionic liquids CO2 capture aspen plus process simulation New green physical solvents Flue gas
下载PDF
Design and control of a p-xylene oxidation process
2
作者 陶莉莉 胡志华 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1935-1944,共10页
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev... The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work. 展开更多
关键词 p-Xylene oxidation Dynamic simulation aspen Dynamics process design and control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部