期刊文献+
共找到1,036篇文章
< 1 2 52 >
每页显示 20 50 100
DAMAGE CLASSIFICATION BY PROBABILISTIC NEURAL NETWORKS BASED ON LATENT COMPONENTS FOR TIME-VARYING SYSTEM 被引量:1
1
作者 袁健 周燕 吕欣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期259-267,共9页
A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the... A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the vibration signal observed in the time-varying system for estimating the TAR/TMA parameters and the innovation variance. These parameters are the functions of the time, represented by a group of projection coefficients on the certain functional subspace with specific basis functions. The estimated TAR/TMA parameters and the innovation variance are further used to calculate the latent components (LCs) as the more informative data for health monitoring evaluation, based on an eigenvalue decomposition technique. LCs are then combined and reduced to numerical values (NVs) as feature sets, which are input to a probabilistic neural network (PNN) for the damage classification. For the evaluation of the proposed method, numerical simulations of the damage classification for a tlme-varylng system are used, in which different classes of damage are modeled by the mass or stiffness reductions. It is demonstrated that the method can identify the damages in the course of operation and the change of parameters on the time-varying background of the system. 展开更多
关键词 damage detection time-varying system feature extraction/reduction probabilistic neural networks
下载PDF
Remote Sensing Image Segmentation with Probabilistic Neural Networks 被引量:4
2
作者 LIUGang 《Geo-Spatial Information Science》 2005年第1期28-32,49,共6页
This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especiall... This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results. 展开更多
关键词 image segmentation probabilistic neural network(pnn)
下载PDF
Probabilistic Neural Networks based network security management
3
作者 LIU Wu WU Zhi-you +2 位作者 DUAN Hai-xin LI Xing WU Jian-ping 《通讯和计算机(中英文版)》 2008年第2期19-24,共6页
关键词 或然论 人工神经网络 网络安全 安全技术
下载PDF
Computer vision-based limestone rock-type classification using probabilistic neural network 被引量:18
4
作者 Ashok Kumar Patel Snehamoy Chatterjee 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期53-60,共8页
Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper,... Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network(PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rocktypes. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms. 展开更多
关键词 Supervised classification probabilistic neural network Histogram based features Smoothing parameter LIMESTONE
下载PDF
EEG classification based on probabilistic neural network with supervised learning in brain computer interface 被引量:1
5
作者 吴婷 Yan Guozheng +1 位作者 Yang Banghua Sun Hong 《High Technology Letters》 EI CAS 2009年第4期384-387,共4页
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented ... Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI. 展开更多
关键词 probabilistic neural network (pnn supervised learning brain computer interface (BCI) electroencephalogram (EEG)
下载PDF
Estimation of reservoir porosity using probabilistic neural network and seismic attributes 被引量:1
6
作者 HOU Qiang ZHU Jianwei LIN Bo 《Global Geology》 2016年第1期6-12,共7页
Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosi... Porosity is one of the most important properties of oil and gas reservoirs. The porosity data that come from well log are only available at well points. It is necessary to use other method to estimate reservoir porosity.Seismic data contain abundant lithological information. Because there are inherent correlations between reservoir property and seismic data,it is possible to estimate reservoir porosity by using seismic data and attributes.Probabilistic neural network is a powerful tool to extract mathematical relation between two data sets. It has been used to extract the mathematical relation between porosity and seismic attributes. Firstly,a seismic impedance volume is calculated by seismic inversion. Secondly,several appropriate seismic attributes are extracted by using multi-regression analysis. Then a probabilistic neural network model is trained to obtain a mathematical relation between porosity and seismic attributes. Finally,this trained probabilistic neural network model is implemented to calculate a porosity data volume. This methodology could be utilized to find advantageous areas at the early stage of exploration. It is also helpful for the establishment of a reservoir model at the stage of reservoir development. 展开更多
关键词 POROSITY seismic attributes probabilistic neural network
下载PDF
An Advanced Probabilistic Neural Network for the Design of Breakwater Armor Blocks
7
作者 Dookie KIM Dong Hyawn KIM +1 位作者 Seongkyu CHANG Gil Lim YOON 《China Ocean Engineering》 SCIE EI 2007年第4期597-610,共14页
In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determine... In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable. 展开更多
关键词 BREAKWATER armor block stability number multivariate gaussian distribution classigication artificial neural network (ANN) advanced probabilistic neural network (Apnn)
下载PDF
Passenger Flow Status Evaluation in Subway Station Based on Probabilistic Neural Network
8
作者 SUN Jianhui HU Hua LIU Zhigang 《International English Education Research》 2018年第3期34-37,共4页
This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passi... This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station. 展开更多
关键词 Subway station Escalator waiting area AFC data probabilistic neural network Passenger flow status
下载PDF
Experiment Verification of Damage Detection for Offshore Platforms by Neural Networks 被引量:3
9
作者 刁延松 李华军 +1 位作者 石湘 王树青 《China Ocean Engineering》 SCIE EI 2006年第3期351-360,共10页
In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change ... In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy. 展开更多
关键词 damage detection offshore platform probabilistic neural networks back-propagation neural networks
下载PDF
Using Neural Networks to Predict Secondary Structure for Protein Folding 被引量:1
10
作者 Ali Abdulhafidh Ibrahim Ibrahim Sabah Yasseen 《Journal of Computer and Communications》 2017年第1期1-8,共8页
Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate predi... Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples. 展开更多
关键词 Protein Secondary Structure Prediction (PSSP) neural network (NN) Α-HELIX (H) Β-SHEET (E) Coil (C) Feed Forward neural network (FNN) Learning Vector Quantization (LVQ) probabilistic neural network (pnn) Convolutional neural network (CNN)
下载PDF
Some Features of Neural Networks as Nonlinearly Parameterized Models of Unknown Systems Using an Online Learning Algorithm
11
作者 Leonid S. Zhiteckii Valerii N. Azarskov +1 位作者 Sergey A. Nikolaienko Klaudia Yu. Solovchuk 《Journal of Applied Mathematics and Physics》 2018年第1期247-263,共17页
This paper deals with deriving the properties of updated neural network model that is exploited to identify an unknown nonlinear system via the standard gradient learning algorithm. The convergence of this algorithm f... This paper deals with deriving the properties of updated neural network model that is exploited to identify an unknown nonlinear system via the standard gradient learning algorithm. The convergence of this algorithm for online training the three-layer neural networks in stochastic environment is studied. A special case where an unknown nonlinearity can exactly be approximated by some neural network with a nonlinear activation function for its output layer is considered. To analyze the asymptotic behavior of the learning processes, the so-called Lyapunov-like approach is utilized. As the Lyapunov function, the expected value of the square of approximation error depending on network parameters is chosen. Within this approach, sufficient conditions guaranteeing the convergence of learning algorithm with probability 1 are derived. Simulation results are presented to support the theoretical analysis. 展开更多
关键词 neural network Nonlinear Model Online Learning Algorithm LYAPUNOV Func-tion probabilistic CONVERGENCE
下载PDF
Nonlinear model predictive control with guaranteed stability based on pseudolinear neural networks
12
作者 WANGYongji WANGHong 《Journal of Chongqing University》 CAS 2004年第1期26-29,共4页
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ... A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems. 展开更多
关键词 pseudolinear neural networks (pnn) nonlinear model predictive control continuous stirred tank reactor (CSTR) asymptotic stability
下载PDF
Uplifting the complexity of analysis for probabilistic security of electricity supply assessments using artificial neural networks
13
作者 Justin Münch Jan Priesmann +3 位作者 Marius Reich Marius Tillmanns Aaron Praktiknjo Mario Adam 《Energy and AI》 EI 2024年第3期313-326,共14页
The energy sector faces rapid decarbonisation and decision-makers demand reliable assessments of the security of electricity supply. For this, detailed simulation models with a high temporal and technological resoluti... The energy sector faces rapid decarbonisation and decision-makers demand reliable assessments of the security of electricity supply. For this, detailed simulation models with a high temporal and technological resolution are required. When confronted with increasing weather-dependent renewable energy generation, probabilistic simulation models have proven. The significant computational costs of calculating a scenario, however, limit the complexity of further analysis. Advances in code optimization as well as the use of computing clusters still lead to runtimes of up to eight hours per scenario. However ongoing research highlights that tailor-made approximations are potentially the key factor in further reducing computing time. Consequently, current research aims to provide a method for the rapid prediction of widely varying scenarios. In this work artificial neural networks (ANN) are trained and compared to approximate the system behavior of the probabilistic simulation model. To do so, information needs to be sampled from the probabilistic simulation in an efficient way. Because only a limited space in the whole design space of the 16 independent variables is of interest, a classification is developed. Finally it required only around 35 min to create the regression models, including sampling the design space, simulating the training data and training the ANNs. The resulting ANNs are able to predict all scenarios within the validity range of the regression model with a coefficient of determination of over 0.9998 for independent test data (1.051.200 data points). They need only a few milliseconds to predict one scenario, enabling in-depth analysis in a brief period of time. 展开更多
关键词 Security of electricity supply probabilistic simulation METAMODELING Artificial neural networks Regression
原文传递
CPSO优化PNN的陀螺故障诊断方法
14
作者 张华强 贾明玉 +2 位作者 赵善飞 芦男 陈雨 《中国惯性技术学报》 EI CSCD 北大核心 2024年第6期630-636,共7页
针对惯性导航系统中的陀螺仪输出信号非线性、故障特征不明显的问题,为提高惯导系统中惯性器件的故障诊断正确率,提出一种基于改进粒子群算法(PSO)优化概率神经网络(PNN)的陀螺信号故障诊断方法。首先,针对光纤陀螺运行过程中常见的四... 针对惯性导航系统中的陀螺仪输出信号非线性、故障特征不明显的问题,为提高惯导系统中惯性器件的故障诊断正确率,提出一种基于改进粒子群算法(PSO)优化概率神经网络(PNN)的陀螺信号故障诊断方法。首先,针对光纤陀螺运行过程中常见的四种故障信号,建立数学模型并进行小波变换提取其故障特征系数;其次,使用Cubic混沌映射以及非线性递减的惯性权重系数对粒子群进行粒子更新,并用于概率神经网络的最优平滑因子选择;最后,训练概率神经网络对陀螺仪故障信号进行分类和诊断。离线测试结果表明,CPSO算法优化的PNN网络针对四种故障分类的平均正确率达到95.8%。 展开更多
关键词 粒子群优化算法 概率神经网络 陀螺故障诊断
下载PDF
Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model 被引量:6
15
作者 Jun Ling Gao-Jun Liu +2 位作者 Jia-Liang Li Xiao-Cheng Shen Dong-Dong You 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期13-23,共11页
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ... Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified. 展开更多
关键词 Fault prediction Nuclear power machinery Steam turbine Recurrent neural network probabilistic principal component analysis Bayesian confidence
下载PDF
Forecasting and optimal probabilistic scheduling of surplus gas systems in iron and steel industry 被引量:5
16
作者 李磊 李红娟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1437-1447,共11页
To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before app... To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules. 展开更多
关键词 surplus gas prediction probabilistic scheduling iron and steel enterprise HP filter Elman neural network(ENN) least squares support vector machine(LSSVM) Markov chain
下载PDF
基于PNN神经网络的凿岩台车电液控制系统故障诊断研究 被引量:1
17
作者 牛帅亭 徐巧玉 张正 《自动化与仪表》 2024年第4期31-36,共6页
针对凿岩台车电液控制系统故障诊断效率低的问题,该文提出一种结合故障树分析法和概率神经网络(probabilistic neural network,PNN)的故障诊断方法。首先,基于电液控制系统的结构和工作原理构建其故障树模型;然后通过对故障树模型进行... 针对凿岩台车电液控制系统故障诊断效率低的问题,该文提出一种结合故障树分析法和概率神经网络(probabilistic neural network,PNN)的故障诊断方法。首先,基于电液控制系统的结构和工作原理构建其故障树模型;然后通过对故障树模型进行定性分析,确定其最小割集和典型故障种类,以选取的典型故障种类的关键参数构建故障征兆矩阵,通过PNN神经网络对该矩阵进行训练和计算,实现对系统典型故障状态的自动识别。实验结果表明,该文方法的平均诊断时间为1.2 s,平均诊断准确率为80%,能够快速准确地定位系统故障,可满足凿岩台车电液控制系统故障诊断的工程实际需求。 展开更多
关键词 凿岩台车 电液控制系统 故障树 pnn神经网络算法 故障诊断
下载PDF
基于LSTM-PNN神经网络的电潜泵故障诊断方法
18
作者 周逸飞 刘新福 +4 位作者 曹砚锋 于继飞 欧阳铁兵 刘春花 周伟 《机床与液压》 北大核心 2024年第19期209-215,共7页
针对电潜螺杆泵故障预测中发生故障难以及时发现、发现难以准确判别故障类型等问题,提出一种基于深度学习长短期记忆网络(LSTM)结合概率神经网络(PNN)的电潜螺杆泵故障预测方法。以LSTM网络为回归模型,使用时间序列法预测故障信号的未... 针对电潜螺杆泵故障预测中发生故障难以及时发现、发现难以准确判别故障类型等问题,提出一种基于深度学习长短期记忆网络(LSTM)结合概率神经网络(PNN)的电潜螺杆泵故障预测方法。以LSTM网络为回归模型,使用时间序列法预测故障信号的未来趋势,利用小波包分解螺杆泵的故障信号,提取其中的故障特征,再结合油压、产量等多个工作参数,构建电潜螺杆泵的故障特征向量,并凭借PNN网络判别预测信号故障类型。收集新疆油田120组故障数据作为数据集对预测模型进行训练,从中取出90组数据作为故障数据库对模型进行训练,取出30组数据作为测试组测试模型准确率,使用LSTM-PNN神经网络预测模型分别对两组数据进行电潜螺杆泵故障预测。结果表明:预测前提取故障信号特征可有效提高电潜螺杆泵的故障预测精度,较常规电潜螺杆泵故障预测方法,LSTM-PNN网络预测具有更高的准确率且准确率提升了3%~16%。 展开更多
关键词 电潜螺杆泵 小波包分解 故障诊断 长短期记忆神经网络 概率神经网络
下载PDF
基于BA-PNN算法与数字孪生的车间扰动判定方法
19
作者 张若语 胡友民 +2 位作者 吴波 杨晔 秦峻峰 《现代制造工程》 CSCD 北大核心 2024年第3期15-22,共8页
随着科学技术的发展,生产安全和车间管理问题越来越受到重视。传统车间在管理上多依靠人工,使得车间扰动事件发现不及时,扰动认定不清楚,不利于迅速解决扰动事件和保障人员设备安全。为提高管理效率和保障安全,提出一种基于蝙蝠算法优... 随着科学技术的发展,生产安全和车间管理问题越来越受到重视。传统车间在管理上多依靠人工,使得车间扰动事件发现不及时,扰动认定不清楚,不利于迅速解决扰动事件和保障人员设备安全。为提高管理效率和保障安全,提出一种基于蝙蝠算法优化的概率神经网络(Bat Algorithm-Probabilistic Neural Network,BA-PNN)算法和数字孪生的车间扰动判定方法。首先通过传感器采集数据并对其进行分析和预处理;随后搭建传统概率神经网络(Probabilistic Neural Net-work,PNN)模型和以算法识别率为优化目标的BA-PNN扰动判定模型,并结合数字孪生技术将BA-PNN模型融入孪生平台;最后通过仿真与结果分析,对比优化前模型效果及孪生平台特点,该模型识别效果较之前显著提高,证明了方法的有效性。 展开更多
关键词 概率神经网络 蝙蝠算法 数字孪生 扰动事件
下载PDF
基于改进BA-PNN的智能变电站二次设备故障定位方法 被引量:7
20
作者 曹海欧 吴迪 +3 位作者 薛飞 王义波 孙弘毅 杨金龙 《智慧电力》 北大核心 2024年第4期32-39,共8页
针对概率神经网络(PNN)在二次设备故障定位中训练规模较大、容易受到平滑因子干扰的问题,提出了一种基于改进蝙蝠算法优化概率神经网络(BA-PNN)的智能变电站二次设备故障定位方法。首先,在PNN的求和层中采用拉普拉斯分布代替高斯分布,并... 针对概率神经网络(PNN)在二次设备故障定位中训练规模较大、容易受到平滑因子干扰的问题,提出了一种基于改进蝙蝠算法优化概率神经网络(BA-PNN)的智能变电站二次设备故障定位方法。首先,在PNN的求和层中采用拉普拉斯分布代替高斯分布,并用BA算法来获得最优平滑因子,进而提出一种改进蝙蝠算法优化概率神经网络方法;其次,基于智能变电站中二次设备的特征分析,选择故障特征量并对其映射,建立了基于BAPNN的智能变电站二次设备故障定位模型;最后,以某智能变电站故障定位为例,对BA-PNN神经网络进行样本训练,实现对故障元件的精确定位。仿真表明,该方法缩小了神经网络的训练规模,提升了神经网络的计算性能,增强了故障定位的准确性。 展开更多
关键词 改进蝙蝠算法优化概率神经网络 二次系统 智能变电站 故障定位
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部