In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficie...In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation.展开更多
Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, th...Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, the required memory size grows linearly with the data size, and handling massive data streams is very difficult. To process big data streams, we propose an online belief propagation (OBP) algorithm based on the improved factor graph representation for PLSA. The factor graph of PLSA facilitates the classic belief propagation (BP) algorithm. Furthermore, OBP splits the data stream into a set of small segments, and uses the estimated parameters of previous segments to calculate the gradient descent of the current segment. Because OBP removes each segment from memory after processing, it is memoryefficient for big data streams. We examine the performance of OBP on four document data sets, and demonstrate that OBP is competitive in both speed and accuracy for online ex- pectation maximization (OEM) in PLSA, and can also give a more accurate topic evolution. Experiments on massive data streams from Baidu further confirm the effectiveness of the OBP algorithm.展开更多
基金Supported by the National Program on Key Basic Research Project(No.2013CB329502)the National Natural Science Foundation of China(No.61202212)+1 种基金the Special Research Project of the Educational Department of Shaanxi Province of China(No.15JK1038)the Key Research Project of Baoji University of Arts and Sciences(No.ZK16047)
文摘In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation.
文摘Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, the required memory size grows linearly with the data size, and handling massive data streams is very difficult. To process big data streams, we propose an online belief propagation (OBP) algorithm based on the improved factor graph representation for PLSA. The factor graph of PLSA facilitates the classic belief propagation (BP) algorithm. Furthermore, OBP splits the data stream into a set of small segments, and uses the estimated parameters of previous segments to calculate the gradient descent of the current segment. Because OBP removes each segment from memory after processing, it is memoryefficient for big data streams. We examine the performance of OBP on four document data sets, and demonstrate that OBP is competitive in both speed and accuracy for online ex- pectation maximization (OEM) in PLSA, and can also give a more accurate topic evolution. Experiments on massive data streams from Baidu further confirm the effectiveness of the OBP algorithm.