期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation 被引量:1
1
作者 Tian Dongping 《High Technology Letters》 EI CAS 2017年第4期367-374,共8页
In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficie... In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation. 展开更多
关键词 automatic image annotation semi-supervised learning probabilistic latent semantic analysis(PLSA) transductive support vector machine(TSVM) image segmentation image retrieval
下载PDF
Fast and robust training of a probabilistic latent semantic analysis model by the parallel learning and data segmentation
2
作者 Masaharu Kato Tetsuo Kosaka +1 位作者 Akinori Ito Shozo Makino 《通讯和计算机(中英文版)》 2009年第5期28-35,共8页
关键词 LAM MIP PLSA 计算机通讯
下载PDF
Online belief propagation algorithm for probabilistic latent semantic analysis 被引量:2
3
作者 Yun YE Shengrong GONG +3 位作者 Chunping LIU Jia ZENG Ning JIA YiZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第4期526-535,共10页
Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, th... Probabilistic latent semantic analysis (PLSA) is a topic model for text documents, which has been widely used in text mining, computer vision, computational biology and so on. For batch PLSA inference algorithms, the required memory size grows linearly with the data size, and handling massive data streams is very difficult. To process big data streams, we propose an online belief propagation (OBP) algorithm based on the improved factor graph representation for PLSA. The factor graph of PLSA facilitates the classic belief propagation (BP) algorithm. Furthermore, OBP splits the data stream into a set of small segments, and uses the estimated parameters of previous segments to calculate the gradient descent of the current segment. Because OBP removes each segment from memory after processing, it is memoryefficient for big data streams. We examine the performance of OBP on four document data sets, and demonstrate that OBP is competitive in both speed and accuracy for online ex- pectation maximization (OEM) in PLSA, and can also give a more accurate topic evolution. Experiments on massive data streams from Baidu further confirm the effectiveness of the OBP algorithm. 展开更多
关键词 probabilistic latent semantic analysis topicmodels expectation maximization belief propagation
原文传递
一种基于上下文语义信息的图像块视觉单词生成算法 被引量:41
4
作者 刘硕研 须德 +2 位作者 冯松鹤 刘镝 裘正定 《电子学报》 EI CAS CSCD 北大核心 2010年第5期1156-1161,共6页
基于视觉单词的词包模型表示(Bag-of-Words)算法是目前场景分类中的主流方法.传统的视觉单词是通过无监督聚类图像块的特征向量得到的.针对传统视觉单词生成算法中没有考虑任何语义信息的缺点,本论文提出一种基于上下文语义信息的图像... 基于视觉单词的词包模型表示(Bag-of-Words)算法是目前场景分类中的主流方法.传统的视觉单词是通过无监督聚类图像块的特征向量得到的.针对传统视觉单词生成算法中没有考虑任何语义信息的缺点,本论文提出一种基于上下文语义信息的图像块视觉单词生成算法:首先,本文中使用的上下文语义信息是视觉单词之间的语义共生概率,它是由概率潜在语义分析模型(probabilistic Latent Semantic Analysis)自动分析得到,无需任何人工标注.其次,我们引入Markov随机场理论中类别标记的伪似然度近似的策略,将图像块在特征域的相似性同空间域的上下文语义共生关系有机地结合起来,从而更准确地为图像块定义视觉单词.最后统计视觉单词的出现频率作为图像的场景表示,利用支持向量机分类器完成图像的场景分类任务.实验结果表明,本算法能有效地提高视觉单词的语义准确性,并在此基础上改善场景分类的性能. 展开更多
关键词 场景分类 视觉单词 概率潜在语义分析模型 MARKOV随机场模型 上下文语义信息
下载PDF
融合语义主题的图像自动标注 被引量:50
5
作者 李志欣 施智平 +1 位作者 李志清 史忠植 《软件学报》 EI CSCD 北大核心 2011年第4期801-812,共12页
由于语义鸿沟的存在,图像自动标注已成为一个重要课题.在概率潜语义分析的基础上,提出了一种融合语义主题的方法以进行图像的标注和检索.首先,为了更准确地建模训练数据,将每幅图像的视觉特征表示为一个视觉"词袋";然后设计... 由于语义鸿沟的存在,图像自动标注已成为一个重要课题.在概率潜语义分析的基础上,提出了一种融合语义主题的方法以进行图像的标注和检索.首先,为了更准确地建模训练数据,将每幅图像的视觉特征表示为一个视觉"词袋";然后设计一个概率模型分别从视觉模态和文本模态中捕获潜在语义主题,并提出一种自适应的不对称学习方法融合两种语义主题.对于每个图像文档,它在各个模态上的主题分布通过加权进行融合,而权值由该文档的视觉词分布的熵值来确定.于是,融合之后的概率模型适当地关联了视觉模态和文本模态的信息,因此能够很好地预测未知图像的语义标注.在一个通用的Corel图像数据集上,将提出的方法与几种前沿的图像标注方法进行了比较.实验结果表明,该方法具有更好的标注和检索性能. 展开更多
关键词 图像自动标注 主题模型 概率潜语义分析 自适应不对称学习 图像检索
下载PDF
基于概率潜在语义分析的词汇情感倾向判别 被引量:15
6
作者 宋晓雷 王素格 +1 位作者 李红霞 李德玉 《中文信息学报》 CSCD 北大核心 2011年第2期89-93,共5页
该文利用概率潜在语义分析,给出了两种用于判别词汇情感倾向的方法。一是使用概率潜在语义分析获得目标词和基准词之间的相似度矩阵,再利用投票法决定其情感倾向;二是利用概率潜在语义分析获取目标词的语义聚类,然后借鉴基于同义词的词... 该文利用概率潜在语义分析,给出了两种用于判别词汇情感倾向的方法。一是使用概率潜在语义分析获得目标词和基准词之间的相似度矩阵,再利用投票法决定其情感倾向;二是利用概率潜在语义分析获取目标词的语义聚类,然后借鉴基于同义词的词汇情感倾向判别方法对目标词的情感倾向做出判别。两种方法的优点是均可在没有外部资源的条件下,实现词汇情感倾向的判别。 展开更多
关键词 概率潜在语义分析 数据稀疏 语义聚类 情感倾向
下载PDF
改进的概率潜在语义分析下的文本聚类算法 被引量:14
7
作者 张玉芳 朱俊 熊忠阳 《计算机应用》 CSCD 北大核心 2011年第3期674-676,693,共4页
概率潜在语义分析(PLSA)模型用期望最大化(EM)算法进行参数训练,由于算法参数的随机初始化,致使聚类的效果过度拟合且过分依赖于参数初始值。将潜在语义分析(LSA)模型参数概率化,用以初始化概率潜在语义分析模型的参数,得到的改进算法... 概率潜在语义分析(PLSA)模型用期望最大化(EM)算法进行参数训练,由于算法参数的随机初始化,致使聚类的效果过度拟合且过分依赖于参数初始值。将潜在语义分析(LSA)模型参数概率化,用以初始化概率潜在语义分析模型的参数,得到的改进算法有效解决了参数随机初始化问题。经实验验证,所提出的方法对文本聚类的归一化互信息(NM I)和准确度都有明显提高。 展开更多
关键词 文本聚类 概率潜在语义分析 参数初始化 潜在语义分析
下载PDF
基于MapReduce的并行PLSA算法及在文本挖掘中的应用 被引量:7
8
作者 李宁 罗文娟 +2 位作者 庄福振 何清 史忠植 《中文信息学报》 CSCD 北大核心 2015年第2期79-86,共8页
PLSA(Probabilistic Latent Semantic Analysis)是一种典型的主题模型。复杂的建模过程使其难以处理海量数据,针对串行PLSA难以处理海量数据的问题,该文提出一种基于MapReduce计算框架的并行PLSA算法,能够以简洁的形式和分布式的方案来... PLSA(Probabilistic Latent Semantic Analysis)是一种典型的主题模型。复杂的建模过程使其难以处理海量数据,针对串行PLSA难以处理海量数据的问题,该文提出一种基于MapReduce计算框架的并行PLSA算法,能够以简洁的形式和分布式的方案来解决大规模数据的并行处理问题,并把并行PLSA算法运用到文本聚类和语义分析的文本挖掘应用中。实验结果表明该算法在处理较大数据量时表现出了很好的性能。 展开更多
关键词 概率主题模型 MAPREDUCE 并行 语义分析
下载PDF
应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择 被引量:16
9
作者 施蓓琦 刘春 +1 位作者 孙伟伟 陈能 《测绘学报》 EI CSCD 北大核心 2013年第3期351-358,366,共9页
针对高光谱影像数据高维性、高度相关性和冗余性等特点,提出应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择。通过稀疏非负矩阵分解方法对高光谱影像进行稀疏化表示,同时顾及其可聚类的特性,在保留所选波段物理意义的基础上,得... 针对高光谱影像数据高维性、高度相关性和冗余性等特点,提出应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择。通过稀疏非负矩阵分解方法对高光谱影像进行稀疏化表示,同时顾及其可聚类的特性,在保留所选波段物理意义的基础上,得到波段选择后的高光谱影像降维数据。通过该方法对PHI-3高光谱影像进行波段选择的试验分析,应用聚类特征有效性分析波段聚类结果,并采用波段子集的信息量、相关性和可分性3类评价指标来验证方法的效果。最终,从运行效率和分类精度两方面证明了基于无监督聚类的稀疏非负矩阵分解对高光谱影像的波段选择的实用性。 展开更多
关键词 高光谱影像 波段选择 稀疏表示 非负矩阵分解 概率潜语义分析聚类
下载PDF
基于语义学习的图像多模态检索 被引量:6
10
作者 李志欣 施智平 +1 位作者 陈宏朝 吴璟莉 《计算机工程》 CAS CSCD 2013年第3期258-263,共6页
针对语义鸿沟问题,在语义学习的基础上设计图像的多模态检索系统。该系统结合3种查询方式进行图像检索。基于视觉特征的查询通过特征提取与相似度匹配进行排位。基于标签的查询建立在图像自动标注的基础上,但在语义空间之外的泛化能力... 针对语义鸿沟问题,在语义学习的基础上设计图像的多模态检索系统。该系统结合3种查询方式进行图像检索。基于视觉特征的查询通过特征提取与相似度匹配进行排位。基于标签的查询建立在图像自动标注的基础上,但在语义空间之外的泛化能力较差。基于语义图例的查询能够在很大程度上克服这个缺陷,通过在显式或隐式的语义空间上进行查询,使检索结果更符合人类感知。实验结果表明,与基于纹理特征的图像检索相比,基于语义图例的检索具有更高的精度及召回率。 展开更多
关键词 图像多模态检索 图像自动标注 概率主题建模 概率潜在语义分析 语义鸿沟 语义学习 语义多项式
下载PDF
基于多尺度上下文语义信息的图像场景分类算法 被引量:14
11
作者 张瑞杰 李弼程 魏福山 《电子学报》 EI CAS CSCD 北大核心 2014年第4期646-652,共7页
传统视觉词典模型没有考虑图像的多尺度和上下文语义共生关系.本文提出一种基于多尺度上下文语义信息的图像场景分类算法.首先,对图像进行多尺度分解,从多个尺度提取不同粒度的视觉信息;其次利用基于密度的自适应选择算法确定最优概率... 传统视觉词典模型没有考虑图像的多尺度和上下文语义共生关系.本文提出一种基于多尺度上下文语义信息的图像场景分类算法.首先,对图像进行多尺度分解,从多个尺度提取不同粒度的视觉信息;其次利用基于密度的自适应选择算法确定最优概率潜在语义分析模型主题数;然后,结合Markov随机场共同挖掘图像块的上下文语义共生信息,得到图像的多尺度直方图表示;最后结合支持向量机实现场景分类.实验结果表明,本文算法能有效利用图像的多尺度和上下文语义信息,提高视觉单词的语义准确性,从而改善场景分类性能. 展开更多
关键词 场景分类 多尺度信息 概率潜在语义分析 自适应主题数 上下文语义信息
下载PDF
基于文本和内容的图像检索算法 被引量:8
12
作者 顾昕 张兴亮 +2 位作者 王超 陈思媛 方正 《计算机应用》 CSCD 北大核心 2014年第A02期280-282,313,共4页
为了提高图像检索的效率,提出一种基于文本和内容的图像检索算法。该算法采用稠密的尺度不变特征转换(DSIFT)构造视觉单词的方式来描述图像内容,依据基于概率潜在语义分析(PLSA)模型的图像自动标注方法获取的视觉语义对查询图像进行初... 为了提高图像检索的效率,提出一种基于文本和内容的图像检索算法。该算法采用稠密的尺度不变特征转换(DSIFT)构造视觉单词的方式来描述图像内容,依据基于概率潜在语义分析(PLSA)模型的图像自动标注方法获取的视觉语义对查询图像进行初步检索,在此结果集上对筛选出的语义相关图像按内容相似度排序输出。在数据集Corel1000上的实验结果表明,该算法能够实现有效的图像检索,检索效率优于单一的基于内容的图像检索算法。 展开更多
关键词 图像检索 稠密的尺度不变特征转换 概率潜在语义分析 自动标注 视觉语义
下载PDF
一种压缩稀疏用户评分矩阵的协同过滤算法 被引量:12
13
作者 侯翠琴 焦李成 张文革 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第4期614-618,638,共6页
提出了一种通过降低用户评分矩阵维数来解决数据稀疏问题的协同过滤算法(基于项目多类属概率潜在语义的协同过滤算法).首先将概率潜在语义分析法中的隐变量集固定为项目的多类属集,明确隐变量的意义,限制隐变量的变化范围;而后迭代学习... 提出了一种通过降低用户评分矩阵维数来解决数据稀疏问题的协同过滤算法(基于项目多类属概率潜在语义的协同过滤算法).首先将概率潜在语义分析法中的隐变量集固定为项目的多类属集,明确隐变量的意义,限制隐变量的变化范围;而后迭代学习隐变量的分布,即用户的兴趣模型,压缩用户评分矩阵;最后用学到的兴趣模型度量用户的相似度,对目标用户做出推荐.仿真实验结果表明:该算法有效解决了数据稀疏问题,平均绝对误差低于基于记忆的协同过滤算法4%;与通过概率潜在语义分析法降低用户评分矩阵维数来解决数据稀疏问题的协同过滤算法相比,该算法明确了隐变量的意义,提高了对系统的理解,并取得了富有竞争力的推荐性能. 展开更多
关键词 项目多类属 概率潜在语义分析 迭代方法 协同过滤 算法
下载PDF
建模连续视觉特征的图像语义标注方法 被引量:9
14
作者 李志欣 施智平 +1 位作者 刘曦 史忠植 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第8期1412-1420,共9页
针对图像检索中存在的"语义鸿沟"问题,提出一种对连续视觉特征直接建模的图像自动标注方法.首先对概率潜语义分析(PLSA)模型进行改进,使之能处理连续量,并推导对应的期望最大化算法来确定模型参数;然后根据不同模态数据各自... 针对图像检索中存在的"语义鸿沟"问题,提出一种对连续视觉特征直接建模的图像自动标注方法.首先对概率潜语义分析(PLSA)模型进行改进,使之能处理连续量,并推导对应的期望最大化算法来确定模型参数;然后根据不同模态数据各自的特点,提出一个对不同模态数据分别处理的图像语义标注模型,该模型使用连续PLSA建模视觉特征,使用标准PLSA建模文本关键词,并通过不对称的学习方法学习2种模态之间的关联,从而能较好地对未知图像进行标注.通过在一个包含5000幅图像的标准Corel数据集中进行实验,并与几种典型的图像标注方法进行比较的结果表明,文中方法具有更高的精度和更好的效果. 展开更多
关键词 图像自动标注 概率潜语义分析 主题模型 连续视觉特征 图像检索
下载PDF
基于分块潜在语义的场景分类方法 被引量:7
15
作者 曾璞 吴玲达 文军 《计算机应用》 CSCD 北大核心 2008年第6期1537-1539,1542,共4页
提出了一种基于分块潜在语义的场景分类方法。该方法首先对图像进行均匀分块并使用分块内视觉词汇的出现频率来描述每一个分块,然后利用概率潜在语义分析(PLSA)方法从图像的分块集合中发现潜在语义模型,最后利用该模型提取出潜在语义在... 提出了一种基于分块潜在语义的场景分类方法。该方法首先对图像进行均匀分块并使用分块内视觉词汇的出现频率来描述每一个分块,然后利用概率潜在语义分析(PLSA)方法从图像的分块集合中发现潜在语义模型,最后利用该模型提取出潜在语义在图像分块中的出现情况来进行场景分类。在13类场景图像上的实验表明,与其他方法相比,该方法具有更高的分类准确率。 展开更多
关键词 场景分类 分块潜在语义 视觉词汇 局部不变特征 概率潜在语义分析
下载PDF
一种基于语义聚类的典型日负荷曲线选取方法 被引量:14
16
作者 孟令奎 段红伟 +1 位作者 黄长青 孙琤 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第1期43-48,共6页
将典型日负荷曲线的选取问题转化为基于统计学习的多元分类问题,利用概率潜在语义分析模型(PLSA)进行问题求解。方法首先通过K均值聚类和负荷曲线时段划分形成观测特征词和目标文档,通过阈值计算获得特征词-目标共生矩阵;然后基于Davies... 将典型日负荷曲线的选取问题转化为基于统计学习的多元分类问题,利用概率潜在语义分析模型(PLSA)进行问题求解。方法首先通过K均值聚类和负荷曲线时段划分形成观测特征词和目标文档,通过阈值计算获得特征词-目标共生矩阵;然后基于Davies-Bouldin指标计算PLSA模型的最佳主题数目,并对模型参数求解获得每个目标文档中特征词的潜在主题;最后依据电力负荷曲线与特征词的对应关系形成新的聚类,并采用选取策略获得各聚类的典型日。实验表明,方法能够较好的反映节假日、气候等因素的影响,典型日选取合理可行。 展开更多
关键词 概率潜在语义分析模型 典型日负荷曲线 Davies—Bouldin指标
下载PDF
融合主题和视觉语义的图像自动标注方法 被引量:7
17
作者 赵鹏 王文彬 朱伟伟 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第11期1709-1714,共6页
为了减小图像语义检索过程中"语义鸿沟"的影响,提出融合主题和视觉语义的图像自动标注方法.该方法先在训练集的文本空间中用概率潜在语义分析(PLSA)模型拟合出主题集合;然后根据图像的高维视觉特征建立主题集合中每个主题的... 为了减小图像语义检索过程中"语义鸿沟"的影响,提出融合主题和视觉语义的图像自动标注方法.该方法先在训练集的文本空间中用概率潜在语义分析(PLSA)模型拟合出主题集合;然后根据图像的高维视觉特征建立主题集合中每个主题的高斯混合模型(GMM),以准确描述其视觉语义信息,减小了"语义鸿沟",提高了图像自动标注的准确性.在Corel数据集上进行了对比实验的结果表明,文中方法在标注的平均标准率和平均标全率上都表现良好,证明了其有效性. 展开更多
关键词 高斯混合模型 概率潜在语义分析 图像自动标注 语义鸿沟 特征聚类
下载PDF
基于PLSA模型的文本分割 被引量:25
18
作者 石晶 戴国忠 《计算机研究与发展》 EI CSCD 北大核心 2007年第2期242-248,共7页
文本分割在信息提取、文摘自动生成、语言建模、首语消解等诸多领域都有极为重要的应用·基于PLSA模型的文本分割试图使隐藏于片段内的不同主题与文本表面的词、句对建立联系·实验以汉语的整句作为基本块,尝试了多种相似性度... 文本分割在信息提取、文摘自动生成、语言建模、首语消解等诸多领域都有极为重要的应用·基于PLSA模型的文本分割试图使隐藏于片段内的不同主题与文本表面的词、句对建立联系·实验以汉语的整句作为基本块,尝试了多种相似性度量手段及边界估计策略,同时考虑相邻句重复的未登录词对相似值的影响,其最佳结果表明,片段边界的识别错误率为6·06%,远远低于其他同类算法· 展开更多
关键词 文本分割 概率潜在语义分析 相似性度量 边界识别
下载PDF
基于概率潜在语义分析的群体情绪演进分析 被引量:4
19
作者 林江豪 周咏梅 +2 位作者 阳爱民 陈昱宏 陈晓帆 《计算机应用》 CSCD 北大核心 2015年第10期2747-2751,2756,共6页
针对群体情绪演进分析中话题内容挖掘及其对应群体情绪分析两个层面的难题,提出了一种基于概率潜在语义分析(PLSA)模型的群体情绪演进分析方法。该方法首先利用PLSA模型抽取时间序列上的子话题,挖掘话题内容随时间的演进规律;再利用句... 针对群体情绪演进分析中话题内容挖掘及其对应群体情绪分析两个层面的难题,提出了一种基于概率潜在语义分析(PLSA)模型的群体情绪演进分析方法。该方法首先利用PLSA模型抽取时间序列上的子话题,挖掘话题内容随时间的演进规律;再利用句法关系和情感本体库,抽取与话题内容相匹配群体情绪单元,计算情绪单元的强度,形成情绪特征向量;最后,对各子话题下的情绪强度进行求和,细粒度分析子话题和事件的整体群体情绪,深入挖掘群体情绪演进规律,并将群体情绪量化和可视化。在话题情绪单元抽取过程中,引入了句法规则和情感本体库,更细粒度地抽取情绪单元,并提高了话题内容与情绪单元匹配的准确性。实验结果表明,该模型能够实现话题内容及其群体情绪按时序特征的演进分析,验证了所提方法的有效性。 展开更多
关键词 群体情绪 概率潜在语义分析模型 话题挖掘 情绪演进 情绪分析
下载PDF
面向时序感知的多类别商品方面情感分析推荐模型 被引量:6
20
作者 丁永刚 李石君 +1 位作者 付星 刘梦君 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1453-1460,共8页
电子商务网站中的评论数据隐含着商品特征和用户情感,现有基于方面情感分析的推荐研究大多通过抽取同一类别商品评论数据中用户对商品不同方面的情感来捕捉用户方面偏好,忽略了不同类别商品有不同方面以及用户的方面偏好随时间变化的特... 电子商务网站中的评论数据隐含着商品特征和用户情感,现有基于方面情感分析的推荐研究大多通过抽取同一类别商品评论数据中用户对商品不同方面的情感来捕捉用户方面偏好,忽略了不同类别商品有不同方面以及用户的方面偏好随时间变化的特点。对此,该文提出一种面向时序感知的多类别商品方面情感分析推荐模型,该模型对用户、商品类别、商品、商品方面、方面情感和时间统一建模,以发现用户对不同类别商品的方面偏好随时间变化的特点,并据此做出推荐。该模型能够推断用户在任意时间对商品的方面偏好,从而为用户提供可解释的推荐。两个真实数据集的实验结果表明,与其它基于时间或方面情感分析的推荐模型相比,该文提出的模型在top-N推荐准确率和召回率评价指标上均获得显著改善。 展开更多
关键词 推荐 时序感知 多类别 方面情感分析 概率潜在语义分析
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部