This paper studies the nonlinear mixed problem for a class of symmetric hyperbolic systems with the boundary condition satisfying the dissipative condition about discontinuous data in higher dimension spaces, establis...This paper studies the nonlinear mixed problem for a class of symmetric hyperbolic systems with the boundary condition satisfying the dissipative condition about discontinuous data in higher dimension spaces, establishes the local existence theorem by using the method of a prior estimates, and obtains the structure of singularities of the solutions of such problems.展开更多
In this paper, we discuss some characteristic properties of partial abstract data type (PADT) and show the diffrence between PADT and abstract data type (ADT) in specification of programming language. Finally, we clar...In this paper, we discuss some characteristic properties of partial abstract data type (PADT) and show the diffrence between PADT and abstract data type (ADT) in specification of programming language. Finally, we clarify that PADT is necessary in programming language description.展开更多
The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better bus...The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better business decisions as data is now pivotal for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data, Privacy & Security, getting optimal path for transport data, and Data Representation. However, the structure of network does not completely match transportation demand, i.e., there still exist a few bottlenecks in the network. This paper presents a new approach to get the optimal path of valuable data movement through a given network based on the knapsack problem. This paper will give value for each piece of data, it depends on the importance of this data (each piece of data defined by two arguments size and value), and the approach tries to find the optimal path from source to destination, a mathematical models are developed to adjust data flows between their shortest paths based on the 0 - 1 knapsack problem. We also take out computational experience using the commercial software Gurobi and a greedy algorithm (GA), respectively. The outcome indicates that the suggest models are active and workable. This paper introduced two different algorithms to study the shortest path problems: the first algorithm studies the shortest path problems when stochastic activates and activities does not depend on weights. The second algorithm studies the shortest path problems depends on weights.展开更多
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ...Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation.展开更多
In this paper we construct optimal, in certain sense, estimates of values of linear functionals on solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary differential equation...In this paper we construct optimal, in certain sense, estimates of values of linear functionals on solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary differential equations from observations which are linear transformations of the same solutions perturbed by additive random noises. It is assumed here that right-hand sides of equations and boundary data as well as statistical characteristics of random noises in observations are not known and belong to certain given sets in corresponding functional spaces. This leads to the necessity of introducing minimax statement of an estimation problem when optimal estimates are defined as linear, with respect to observations, estimates for which the maximum of mean square error of estimation taken over the above-mentioned sets attains minimal value. Such estimates are called minimax mean square or guaranteed estimates. We establish that the minimax mean square estimates are expressed via solutions of some systems of differential equations of special type and determine estimation errors.展开更多
快速准确的电力系统扰动检测能够为后续扰动分析提供有效的指导信息,而广域测量系统(wide area measurement system,WAMS)的广泛应用为扰动检测提供了有力的数据基础。基于PMU量测数据,该文提出一种考虑PMU不良数据的扰动事件检测方法...快速准确的电力系统扰动检测能够为后续扰动分析提供有效的指导信息,而广域测量系统(wide area measurement system,WAMS)的广泛应用为扰动检测提供了有力的数据基础。基于PMU量测数据,该文提出一种考虑PMU不良数据的扰动事件检测方法。首先分析PMU异常数据行为特性,揭示扰动事件与不良数据的差异性特征。进一步,提出一种基于差分Teager-Kaiser能量算子与3Sigma准则相结合的PMU异常数据初筛方法,避免了低强度扰动漏检和扰动的重复检测问题。接着,利用动态时间规整和最大互信息系数分别计算不同PMU间的时空相似性,以及同一台PMU内不同量测间的相关性,并以此作为表征扰动事件和不良数据差异的特征。最后,通过局部离群概率算法对得到的综合度量指标进行分析,可实现在含有不良数据场景下的扰动事件准确检测。基于IEEE39系统,实际电网模型以及PMU实测数据,验证所提方法具有较好准确性、实时性以及泛化能力。展开更多
文摘This paper studies the nonlinear mixed problem for a class of symmetric hyperbolic systems with the boundary condition satisfying the dissipative condition about discontinuous data in higher dimension spaces, establishes the local existence theorem by using the method of a prior estimates, and obtains the structure of singularities of the solutions of such problems.
基金The Project Supported by National Natural Science Foundation of China
文摘In this paper, we discuss some characteristic properties of partial abstract data type (PADT) and show the diffrence between PADT and abstract data type (ADT) in specification of programming language. Finally, we clarify that PADT is necessary in programming language description.
文摘The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better business decisions as data is now pivotal for an organizations success. These enormous amounts of data are referred to as Big Data, which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data, Privacy & Security, getting optimal path for transport data, and Data Representation. However, the structure of network does not completely match transportation demand, i.e., there still exist a few bottlenecks in the network. This paper presents a new approach to get the optimal path of valuable data movement through a given network based on the knapsack problem. This paper will give value for each piece of data, it depends on the importance of this data (each piece of data defined by two arguments size and value), and the approach tries to find the optimal path from source to destination, a mathematical models are developed to adjust data flows between their shortest paths based on the 0 - 1 knapsack problem. We also take out computational experience using the commercial software Gurobi and a greedy algorithm (GA), respectively. The outcome indicates that the suggest models are active and workable. This paper introduced two different algorithms to study the shortest path problems: the first algorithm studies the shortest path problems when stochastic activates and activities does not depend on weights. The second algorithm studies the shortest path problems depends on weights.
文摘Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation.
文摘In this paper we construct optimal, in certain sense, estimates of values of linear functionals on solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary differential equations from observations which are linear transformations of the same solutions perturbed by additive random noises. It is assumed here that right-hand sides of equations and boundary data as well as statistical characteristics of random noises in observations are not known and belong to certain given sets in corresponding functional spaces. This leads to the necessity of introducing minimax statement of an estimation problem when optimal estimates are defined as linear, with respect to observations, estimates for which the maximum of mean square error of estimation taken over the above-mentioned sets attains minimal value. Such estimates are called minimax mean square or guaranteed estimates. We establish that the minimax mean square estimates are expressed via solutions of some systems of differential equations of special type and determine estimation errors.
文摘快速准确的电力系统扰动检测能够为后续扰动分析提供有效的指导信息,而广域测量系统(wide area measurement system,WAMS)的广泛应用为扰动检测提供了有力的数据基础。基于PMU量测数据,该文提出一种考虑PMU不良数据的扰动事件检测方法。首先分析PMU异常数据行为特性,揭示扰动事件与不良数据的差异性特征。进一步,提出一种基于差分Teager-Kaiser能量算子与3Sigma准则相结合的PMU异常数据初筛方法,避免了低强度扰动漏检和扰动的重复检测问题。接着,利用动态时间规整和最大互信息系数分别计算不同PMU间的时空相似性,以及同一台PMU内不同量测间的相关性,并以此作为表征扰动事件和不良数据差异的特征。最后,通过局部离群概率算法对得到的综合度量指标进行分析,可实现在含有不良数据场景下的扰动事件准确检测。基于IEEE39系统,实际电网模型以及PMU实测数据,验证所提方法具有较好准确性、实时性以及泛化能力。