Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approach...Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification.展开更多
Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M...Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi...Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.展开更多
The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to st...The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst.展开更多
Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Parti...Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization(SPSOM)and Incremental Deep Convolution Neural Networks(IDCNN)for detecting multiple objects.However,the study considered opticalflows resulting in assessing motion contrasts.Existing methods have issue with accuracy and error rates in motion contrast detection.Hence,the overall object detection performance is reduced significantly.Thus,consideration of object motions in videos efficiently is a critical issue to be solved.To overcome the above mentioned problems,this research work proposes a method involving ensemble approaches to and detect objects efficiently from video streams.This work uses a system modeled on swarm optimization and ensemble learning called Spatiotemporal Glowworm Swarm Optimization Model(SGSOM)for detecting multiple significant objects.A steady quality in motion contrasts is maintained in this work by using Chebyshev distance matrix.The proposed system achieves global optimization in its multiple object detection by exploiting spatial/temporal cues and local constraints.Its experimental results show that the proposed system scores 4.8%in Mean Absolute Error(MAE)while achieving 86%in accuracy,81.5%in precision,85%in recall and 81.6%in F-measure and thus proving its utility in detecting multiple objects.展开更多
Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management syst...Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection.展开更多
The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper use...The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper uses the data from one semester to state how to carry out the program and the good results. At the same time disadvantages are also the points that should be taken into consideration. From the teaching and learning practice, students have benefited from the online videos, complementary materials and discussions;they need to be guided as well, especially the guidance offline to make up. Furthermore, the balance of time online and offline is a great challenge.展开更多
Background: Ophthalmology is an important medical science subject, but it is given with insufficient attention in undergraduate medical education. Flipped classroom(FC) and problem-based learning(PBL) are well-known e...Background: Ophthalmology is an important medical science subject, but it is given with insufficient attention in undergraduate medical education. Flipped classroom(FC) and problem-based learning(PBL) are well-known education methods that can be integrated into ophthalmology education to improve students' competence level and promote active learning. Methods: We used a mixed teaching methodology that integrated a FC and PBL into a 1-week ophthalmology clerkship for 72 fourth-year medical students. The course includes two major sessions: FC session and PBL session, relying on clinical and real-patient cases. Written examinations were set up to assess students' academic performance and questionnaires were designed to evaluate their perceptions. Results: The post-course examination results were higher than the pre-course results, and many students gained ophthalmic knowledge and learning skills to varying levels. Comparison of pre-and post-course questionnaires indicated that interests in ophthalmology increased and more students expressed desires to be eye doctors. Most students were satisfied with the new method, while some suggested the process should be slower and the communication with their teacher needed to strengthen.Conclusions: FC and PBL are complementary methodologies. Utilizing the mixed teaching meth of FC and PBL was successful in enhancing academic performance, student satisfactions and promoting active learning.展开更多
Introduction: Nursing students’ experiences during the pandemic provoked social isolation, the way to learn and every context increasing their stress and anxiety leading to drug use and abuse, among others. Problem-b...Introduction: Nursing students’ experiences during the pandemic provoked social isolation, the way to learn and every context increasing their stress and anxiety leading to drug use and abuse, among others. Problem-based learning (PBL) is a pedagogic strategy to strengthen significant learning;then the objective was to establish PBL influence in nursing students’ experiences on drug use and abuse during COVID-19 contingency. Methods: Qualitative, phenomenological and descriptive paradigm, 12 female and male nursing students aged 20 - 24 years old from the 5<sup>th</sup> and 6<sup>th</sup> semesters participated. Information collection was through semi-structured interview and a deep one in four cases. A guide of questions about: How the pandemic impacted your life? How did you face it? And what did you learn during this process? Those questions were used. Qualitative data analysis was based on De Souza Minayo, and signed informed consent was obtained from participants. Results: Students’ experiences allowed four categories to emerge, with six sub-categories. Category I. Students’ experiences on drug use and abuse facing the sanitary contingency;Category II. Students’ skills development to identify a problem and design of appropriate solutions;Category III. Developing skills to favor interpersonal relationships;Category IV. Influence of PBL in nursing students’ experiences on drug use and abuse during the COVID-19 contingency. Conclusion: PBL favored analysis and thoughts in nursing students’ experiences on drug use and abuse during the COVID-19 contingency, they worked collaboratively, developed resilience to daily life situations, and implemented stress coping strategies with their significant learning, which diminished their risk behavior.展开更多
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO...The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.展开更多
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroi...In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.展开更多
Introduction: The purposes of this study were to describe the simulation integrated with problem-based learning (SIM-PBL) module to educate the nursing process for clients with hypertension and to evaluate its effecti...Introduction: The purposes of this study were to describe the simulation integrated with problem-based learning (SIM-PBL) module to educate the nursing process for clients with hypertension and to evaluate its effectiveness on nursing students’ self-efficacy (SE). Methods: This study was a one group pre- and post-test design. Twenty five students received a 5-hour SIM-PBL program focused on nursing care of clients with hypertension. A newly developed self-report questionnaire was used to assess SE in four areas of the nursing process with a scale of 0 (not at all confident) to 10 (totally confident). The four areas were subjective data assessment, physical examination, prioritizing nursing care and health promotion advices. Results: At baseline, students’ SE ranged from 5.5 ± 1.4 (prioritizing nursing care) to 7.6 ± 1.4 (subjective data assessment). After SIM-PBL education, all areas of nursing process presented statistically significant improvements of SE. The improvements were most noticeable in prioritizing nursing care. Conclusion: The SIM-PBL module was effective in improving the students’ self-efficacy in the nursing process for patients with hypertension. Further studies are recommended in developing SIM-PBL modules for diverse nursing topics and evaluating their effectiveness in various aspects of students’ competency.展开更多
Objectives: The study’s aims to determine and assess the application of problem-based learning to undergraduate nursing students. Background: Nursing students are the upcoming health care delivery system;according to...Objectives: The study’s aims to determine and assess the application of problem-based learning to undergraduate nursing students. Background: Nursing students are the upcoming health care delivery system;according to their standard of learning, it will affect their clinical training. Method: The study design is a case study review, the data was collected using many articles related to problem-based learning collected from E-books and E-journals websites like CINAHEL, Google Scholar, etc. After that, the data was analyzed and evaluated related to the application of problem-based learning on undergraduate nursing students. Result: The result appeared that most of the research proved and supported that the application of problem-based learning is effective for undergraduate nursing students, and students can solve patients’ problems in a better way. Conclusion: In conclusion, problem-based learning is an essential part of the nursing diagnosis process that will increase knowledge, and performance, and merge it with the nursing concepts.展开更多
The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab....The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.展开更多
文摘Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification.
文摘Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
文摘Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.
文摘The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst.
文摘Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization(SPSOM)and Incremental Deep Convolution Neural Networks(IDCNN)for detecting multiple objects.However,the study considered opticalflows resulting in assessing motion contrasts.Existing methods have issue with accuracy and error rates in motion contrast detection.Hence,the overall object detection performance is reduced significantly.Thus,consideration of object motions in videos efficiently is a critical issue to be solved.To overcome the above mentioned problems,this research work proposes a method involving ensemble approaches to and detect objects efficiently from video streams.This work uses a system modeled on swarm optimization and ensemble learning called Spatiotemporal Glowworm Swarm Optimization Model(SGSOM)for detecting multiple significant objects.A steady quality in motion contrasts is maintained in this work by using Chebyshev distance matrix.The proposed system achieves global optimization in its multiple object detection by exploiting spatial/temporal cues and local constraints.Its experimental results show that the proposed system scores 4.8%in Mean Absolute Error(MAE)while achieving 86%in accuracy,81.5%in precision,85%in recall and 81.6%in F-measure and thus proving its utility in detecting multiple objects.
文摘Occupant behaviour has significant impacts on the performance of machine learning algorithms when predicting building energy consumption.Due to a variety of reasons(e.g.,underperforming building energy management systems or restrictions due to privacy policies),the availability of occupational data has long been an obstacle that hinders the performance of machine learning algorithms in predicting building energy consumption.Therefore,this study proposed an agent⁃based machine learning model whereby agent⁃based modelling was employed to generate simulated occupational data as input features for machine learning algorithms for building energy consumption prediction.Boruta feature selection was also introduced in this study to select all relevant features.The results indicated that the performances of machine learning algorithms in predicting building energy consumption were significantly improved when using simulated occupational data,with even greater improvements after conducting Boruta feature selection.
文摘The course “Taishan Cultural Communication with the World” has been online and offline teaching and learning for two terms based on the theoretical ideas: Blended Learning and Outcome-Based Education. This paper uses the data from one semester to state how to carry out the program and the good results. At the same time disadvantages are also the points that should be taken into consideration. From the teaching and learning practice, students have benefited from the online videos, complementary materials and discussions;they need to be guided as well, especially the guidance offline to make up. Furthermore, the balance of time online and offline is a great challenge.
基金supported by National Natural Science Foundation of China for Young Scientist (81200686, 81400426)Research Fund for the Doctoral Program of Higher Education of China (20120171120108)+1 种基金Natural Science Foundation of Guangdong Province, China(S2011040005378)Fundamental Research Funds for the Central Universities (11ykpy65, 15ykpy31)
文摘Background: Ophthalmology is an important medical science subject, but it is given with insufficient attention in undergraduate medical education. Flipped classroom(FC) and problem-based learning(PBL) are well-known education methods that can be integrated into ophthalmology education to improve students' competence level and promote active learning. Methods: We used a mixed teaching methodology that integrated a FC and PBL into a 1-week ophthalmology clerkship for 72 fourth-year medical students. The course includes two major sessions: FC session and PBL session, relying on clinical and real-patient cases. Written examinations were set up to assess students' academic performance and questionnaires were designed to evaluate their perceptions. Results: The post-course examination results were higher than the pre-course results, and many students gained ophthalmic knowledge and learning skills to varying levels. Comparison of pre-and post-course questionnaires indicated that interests in ophthalmology increased and more students expressed desires to be eye doctors. Most students were satisfied with the new method, while some suggested the process should be slower and the communication with their teacher needed to strengthen.Conclusions: FC and PBL are complementary methodologies. Utilizing the mixed teaching meth of FC and PBL was successful in enhancing academic performance, student satisfactions and promoting active learning.
文摘Introduction: Nursing students’ experiences during the pandemic provoked social isolation, the way to learn and every context increasing their stress and anxiety leading to drug use and abuse, among others. Problem-based learning (PBL) is a pedagogic strategy to strengthen significant learning;then the objective was to establish PBL influence in nursing students’ experiences on drug use and abuse during COVID-19 contingency. Methods: Qualitative, phenomenological and descriptive paradigm, 12 female and male nursing students aged 20 - 24 years old from the 5<sup>th</sup> and 6<sup>th</sup> semesters participated. Information collection was through semi-structured interview and a deep one in four cases. A guide of questions about: How the pandemic impacted your life? How did you face it? And what did you learn during this process? Those questions were used. Qualitative data analysis was based on De Souza Minayo, and signed informed consent was obtained from participants. Results: Students’ experiences allowed four categories to emerge, with six sub-categories. Category I. Students’ experiences on drug use and abuse facing the sanitary contingency;Category II. Students’ skills development to identify a problem and design of appropriate solutions;Category III. Developing skills to favor interpersonal relationships;Category IV. Influence of PBL in nursing students’ experiences on drug use and abuse during the COVID-19 contingency. Conclusion: PBL favored analysis and thoughts in nursing students’ experiences on drug use and abuse during the COVID-19 contingency, they worked collaboratively, developed resilience to daily life situations, and implemented stress coping strategies with their significant learning, which diminished their risk behavior.
基金financial support extended for this academic work by the Beijing Natural Science Foundation(Grant 2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.
文摘In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.
文摘Introduction: The purposes of this study were to describe the simulation integrated with problem-based learning (SIM-PBL) module to educate the nursing process for clients with hypertension and to evaluate its effectiveness on nursing students’ self-efficacy (SE). Methods: This study was a one group pre- and post-test design. Twenty five students received a 5-hour SIM-PBL program focused on nursing care of clients with hypertension. A newly developed self-report questionnaire was used to assess SE in four areas of the nursing process with a scale of 0 (not at all confident) to 10 (totally confident). The four areas were subjective data assessment, physical examination, prioritizing nursing care and health promotion advices. Results: At baseline, students’ SE ranged from 5.5 ± 1.4 (prioritizing nursing care) to 7.6 ± 1.4 (subjective data assessment). After SIM-PBL education, all areas of nursing process presented statistically significant improvements of SE. The improvements were most noticeable in prioritizing nursing care. Conclusion: The SIM-PBL module was effective in improving the students’ self-efficacy in the nursing process for patients with hypertension. Further studies are recommended in developing SIM-PBL modules for diverse nursing topics and evaluating their effectiveness in various aspects of students’ competency.
文摘Objectives: The study’s aims to determine and assess the application of problem-based learning to undergraduate nursing students. Background: Nursing students are the upcoming health care delivery system;according to their standard of learning, it will affect their clinical training. Method: The study design is a case study review, the data was collected using many articles related to problem-based learning collected from E-books and E-journals websites like CINAHEL, Google Scholar, etc. After that, the data was analyzed and evaluated related to the application of problem-based learning on undergraduate nursing students. Result: The result appeared that most of the research proved and supported that the application of problem-based learning is effective for undergraduate nursing students, and students can solve patients’ problems in a better way. Conclusion: In conclusion, problem-based learning is an essential part of the nursing diagnosis process that will increase knowledge, and performance, and merge it with the nursing concepts.
文摘The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency.