The paper mainly focuses on the network planning and optimization problem in the 5G telecommunication system based on the numerical investigation.There have been two portions of this work,such as network planning for ...The paper mainly focuses on the network planning and optimization problem in the 5G telecommunication system based on the numerical investigation.There have been two portions of this work,such as network planning for efficient network models and optimization of power allocation in the 5G network.The radio network planning process has been completed based on a specific area.The data rate requirement can be solved by allowing the densification of the system by deploying small cells.The radio network planning scheme is the indispensable platform in arranging a wireless network that encounters convinced coverage method,capacity,and Quality of Service necessities.In this study,the eighty micro base stations and two-hundred mobile stations are deployed in the-15km×15km wide selected area in the Yangon downtown area.The optimization processes were also analyzed based on the source and destination nodes in the 5G network.The base stations’location is minimized and optimized in a selected geographical area with the linear programming technique and analyzed in this study.展开更多
From the concept of four-dimensional space and under the four kinds of time limit conditions, some general theorems for elastodynamics are developed, such as the principle of possible work action, the virtual displace...From the concept of four-dimensional space and under the four kinds of time limit conditions, some general theorems for elastodynamics are developed, such as the principle of possible work action, the virtual displacement principle, the virtual stress-momentum principle, the reciprocal theorems and the related theorems of time terminal conditions derived from it. The variational principles of potential energy action and complementary energy action, the H-W principles, the H-R principles and the constitutive variational principles for elastodynamics are obtained. Hamilton's principle, Toupin's work and the formulations of Ref. [5], [17]-[24] may be regarded as some special cases of the general principles given in the paper. By considering three cases: piecewise space-time domain, piecewise space domain, piecewise time domain, the piecewise variational principles including the potential, the complementary and the mixed energy action fashions are given. Finally, the general formulation of piecewise variational principles is derived. If the time dimension is not considered, the formulations obtained in the paper will become the corresponding ones for elastostatics.展开更多
This paper presents a new finite element method for solving static and dynamic problems in laying operation of pipelines. The effect of the viscoelastic soil behavior is considered by using the Pasternak foundation mo...This paper presents a new finite element method for solving static and dynamic problems in laying operation of pipelines. The effect of the viscoelastic soil behavior is considered by using the Pasternak foundation model. Some examples are also presented.展开更多
The location of the distribution facilities and the routing of the vehicles from these facilities are interdependent in many distribution systems. Such a concept recognizes the interdependence;attempts to integrate th...The location of the distribution facilities and the routing of the vehicles from these facilities are interdependent in many distribution systems. Such a concept recognizes the interdependence;attempts to integrate these two decisions have been limited. Multi-objective location-routing problem (MLRP) is combined with the facility location and the vehicle routing decision and satisfied the different objectives. Due to the problem complexity, simultaneous solution methods are limited, which are given in different objectives with conflicts in functions satisfied. Two kinds of optimal mathematical models are proposed for the solution of MLRP. Three methods have been emphatically developed for MLRP. MGA architecture makes it possible to search the solution space efficiently, which provides a path for searching the solution with two-objective LRP. At last the practical proof is given by random analysis for regional distribution with nine cities.展开更多
In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic...In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.展开更多
This paper presents an alternate graphical procedure (Method 2), to that presented in earlier publications entitled, “A Procedure for Trisecting an Acute Angle” and “A Key to Solving the Angle Trisection Problem”....This paper presents an alternate graphical procedure (Method 2), to that presented in earlier publications entitled, “A Procedure for Trisecting an Acute Angle” and “A Key to Solving the Angle Trisection Problem”. The procedure, when applied to the 30˚ and 60˚ angles that have been “proven” to be nottrisectable and the 45˚ benchmark angle that is known to be trisectable, in each case produced a construction having an identical angular relationship with Archimedes’ Construction, as in Section 2 on THEORY of this paper, where the required trisection angle was found to be one-third of its respective angle (i.e. DE’MA = 1/3 DE’CG). For example, the trisection angle for the 30˚, 45˚ and 60˚ angles were 10.00000˚, 15.00000˚, and 20.00000˚, respectively, and Section 5 on PROOF in this paper. Therefore, based on this identical angular relationship and the numerical results (i.e. to five decimal places), which represent the highest degree of accuracy and precision attainable by The Geometer’s Sketch Pad software, one can only conclude that not only the geometric requirements for arriving at an exact trisection of the 30˚ and 60˚ angle (which have been “proven” to be not-trisectable) have been met, but also, the construction is valid for any arbitrary acute angle, despite theoretical proofs to the contrary by Wantzel, Dudley, and others.展开更多
In this paper, the large deflection theory of symmetrically laminated cylindrically orthotropic shallow spherical shells is established. Based on this theory, applying the modified iteration method, the analytic solut...In this paper, the large deflection theory of symmetrically laminated cylindrically orthotropic shallow spherical shells is established. Based on this theory, applying the modified iteration method, the analytic solution for critical buckling loads of the shells with rigidly clamped edges under actions of uniform pressure has been obtained.展开更多
Based on Karman's nonlinear fundamental differential equations, the new approach, which combines modified iteration method with Galerkin's one, has been put forward to solve nonlinear bending of shallow spheri...Based on Karman's nonlinear fundamental differential equations, the new approach, which combines modified iteration method with Galerkin's one, has been put forward to solve nonlinear bending of shallow spherical shell with concave base and clamped edges on the Pasternak foundation under uniform loads in this paper. Mathematical expression of load-deflection has been given; furthermore, results obtained are in good agreement with existent ones.展开更多
This paper describes the methodology (or approach) that was key to the solution of the angle trisection problem published earlier in article entitled, “A Procedure For Trisecting An Acute Angle.” It was an approach ...This paper describes the methodology (or approach) that was key to the solution of the angle trisection problem published earlier in article entitled, “A Procedure For Trisecting An Acute Angle.” It was an approach that required first, designing a working model of a trisector mechanism, second, studying the motion of key elements of the mechanism and third, applying the fundamental principles of kinematics to arrive at the desired results. In presenting these results, since there was no requirement to provide a detailed analysis of the final construction, this information was not included. However, now that the publication is out, it is considered appropriate as well as instructive to explain more fully the mechanism analysis of the trisector in graphical detail, as covered in Section 3 of this paper, that formed the basis of the long sought solution to the age-old Angle Trisection Problem.展开更多
This paper presents a simplified graphical procedure for constructing, using an unmarked straightedge and a compass only, a 10˚ to 20˚ angle, which is in other words, trisecting a 30˚ or 60˚ angle. The procedure, when...This paper presents a simplified graphical procedure for constructing, using an unmarked straightedge and a compass only, a 10˚ to 20˚ angle, which is in other words, trisecting a 30˚ or 60˚ angle. The procedure, when applied to the 30˚ and 60˚ angles that have been “proven” to be not trisectable, produced a construction having the identical angular relationship with Archimedes’ Construction, in which the required trisection angles were found to be 10.00000˚ and 20.00000˚ respectively (i.e. exactly one-third of the given angle or ∠E’MA = 1/3∠E’CG). Based on this identical angular relationship as well as the numerical results obtained, one can only conclude that the geometric requirements for arriving at an exact trisection of the 30˚ or 60˚ angle, and therefore the construction of a 10˚ or 20˚ angle, have been met, notwithstanding the theoretical proofs of Wantzel, Dudley, and others. Thus, the solution to the age-old trisection problem, with respect to these two angles, has been accomplished.展开更多
Problem of search of universal system of formalization the knowledge is discussed.Philisophical,mathematical,cybernetic and computing aspects of its problem are analyzed.Foundation of polymetrical analysis as variant ...Problem of search of universal system of formalization the knowledge is discussed.Philisophical,mathematical,cybernetic and computing aspects of its problem are analyzed.Foundation of polymetrical analysis as variant of resolution of this problem is represented.We show that this system allowed resolving S.Beer centurial problem in cybernetics.Also it allowed creating the natural(operational)approach in the foundation of mathematics and system concept of computing science.展开更多
基金This work was fully supported by U Nyi Hla Nge Foundation at Yangon Technological University,Gyogone,Insein PO,11011,Yangon,Myanmar。
文摘The paper mainly focuses on the network planning and optimization problem in the 5G telecommunication system based on the numerical investigation.There have been two portions of this work,such as network planning for efficient network models and optimization of power allocation in the 5G network.The radio network planning process has been completed based on a specific area.The data rate requirement can be solved by allowing the densification of the system by deploying small cells.The radio network planning scheme is the indispensable platform in arranging a wireless network that encounters convinced coverage method,capacity,and Quality of Service necessities.In this study,the eighty micro base stations and two-hundred mobile stations are deployed in the-15km×15km wide selected area in the Yangon downtown area.The optimization processes were also analyzed based on the source and destination nodes in the 5G network.The base stations’location is minimized and optimized in a selected geographical area with the linear programming technique and analyzed in this study.
基金Doctorate Training Fund of National Education Commission of China
文摘From the concept of four-dimensional space and under the four kinds of time limit conditions, some general theorems for elastodynamics are developed, such as the principle of possible work action, the virtual displacement principle, the virtual stress-momentum principle, the reciprocal theorems and the related theorems of time terminal conditions derived from it. The variational principles of potential energy action and complementary energy action, the H-W principles, the H-R principles and the constitutive variational principles for elastodynamics are obtained. Hamilton's principle, Toupin's work and the formulations of Ref. [5], [17]-[24] may be regarded as some special cases of the general principles given in the paper. By considering three cases: piecewise space-time domain, piecewise space domain, piecewise time domain, the piecewise variational principles including the potential, the complementary and the mixed energy action fashions are given. Finally, the general formulation of piecewise variational principles is derived. If the time dimension is not considered, the formulations obtained in the paper will become the corresponding ones for elastostatics.
基金This project is financially supported by the National Science Foundation of China
文摘This paper presents a new finite element method for solving static and dynamic problems in laying operation of pipelines. The effect of the viscoelastic soil behavior is considered by using the Pasternak foundation model. Some examples are also presented.
文摘The location of the distribution facilities and the routing of the vehicles from these facilities are interdependent in many distribution systems. Such a concept recognizes the interdependence;attempts to integrate these two decisions have been limited. Multi-objective location-routing problem (MLRP) is combined with the facility location and the vehicle routing decision and satisfied the different objectives. Due to the problem complexity, simultaneous solution methods are limited, which are given in different objectives with conflicts in functions satisfied. Two kinds of optimal mathematical models are proposed for the solution of MLRP. Three methods have been emphatically developed for MLRP. MGA architecture makes it possible to search the solution space efficiently, which provides a path for searching the solution with two-objective LRP. At last the practical proof is given by random analysis for regional distribution with nine cities.
文摘In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.
文摘This paper presents an alternate graphical procedure (Method 2), to that presented in earlier publications entitled, “A Procedure for Trisecting an Acute Angle” and “A Key to Solving the Angle Trisection Problem”. The procedure, when applied to the 30˚ and 60˚ angles that have been “proven” to be nottrisectable and the 45˚ benchmark angle that is known to be trisectable, in each case produced a construction having an identical angular relationship with Archimedes’ Construction, as in Section 2 on THEORY of this paper, where the required trisection angle was found to be one-third of its respective angle (i.e. DE’MA = 1/3 DE’CG). For example, the trisection angle for the 30˚, 45˚ and 60˚ angles were 10.00000˚, 15.00000˚, and 20.00000˚, respectively, and Section 5 on PROOF in this paper. Therefore, based on this identical angular relationship and the numerical results (i.e. to five decimal places), which represent the highest degree of accuracy and precision attainable by The Geometer’s Sketch Pad software, one can only conclude that not only the geometric requirements for arriving at an exact trisection of the 30˚ and 60˚ angle (which have been “proven” to be not-trisectable) have been met, but also, the construction is valid for any arbitrary acute angle, despite theoretical proofs to the contrary by Wantzel, Dudley, and others.
文摘In this paper, the large deflection theory of symmetrically laminated cylindrically orthotropic shallow spherical shells is established. Based on this theory, applying the modified iteration method, the analytic solution for critical buckling loads of the shells with rigidly clamped edges under actions of uniform pressure has been obtained.
文摘Based on Karman's nonlinear fundamental differential equations, the new approach, which combines modified iteration method with Galerkin's one, has been put forward to solve nonlinear bending of shallow spherical shell with concave base and clamped edges on the Pasternak foundation under uniform loads in this paper. Mathematical expression of load-deflection has been given; furthermore, results obtained are in good agreement with existent ones.
文摘This paper describes the methodology (or approach) that was key to the solution of the angle trisection problem published earlier in article entitled, “A Procedure For Trisecting An Acute Angle.” It was an approach that required first, designing a working model of a trisector mechanism, second, studying the motion of key elements of the mechanism and third, applying the fundamental principles of kinematics to arrive at the desired results. In presenting these results, since there was no requirement to provide a detailed analysis of the final construction, this information was not included. However, now that the publication is out, it is considered appropriate as well as instructive to explain more fully the mechanism analysis of the trisector in graphical detail, as covered in Section 3 of this paper, that formed the basis of the long sought solution to the age-old Angle Trisection Problem.
文摘This paper presents a simplified graphical procedure for constructing, using an unmarked straightedge and a compass only, a 10˚ to 20˚ angle, which is in other words, trisecting a 30˚ or 60˚ angle. The procedure, when applied to the 30˚ and 60˚ angles that have been “proven” to be not trisectable, produced a construction having the identical angular relationship with Archimedes’ Construction, in which the required trisection angles were found to be 10.00000˚ and 20.00000˚ respectively (i.e. exactly one-third of the given angle or ∠E’MA = 1/3∠E’CG). Based on this identical angular relationship as well as the numerical results obtained, one can only conclude that the geometric requirements for arriving at an exact trisection of the 30˚ or 60˚ angle, and therefore the construction of a 10˚ or 20˚ angle, have been met, notwithstanding the theoretical proofs of Wantzel, Dudley, and others. Thus, the solution to the age-old trisection problem, with respect to these two angles, has been accomplished.
文摘Problem of search of universal system of formalization the knowledge is discussed.Philisophical,mathematical,cybernetic and computing aspects of its problem are analyzed.Foundation of polymetrical analysis as variant of resolution of this problem is represented.We show that this system allowed resolving S.Beer centurial problem in cybernetics.Also it allowed creating the natural(operational)approach in the foundation of mathematics and system concept of computing science.