At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is lar...At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large.It is difficult to control and eliminate the local convex deformation after welding.In order to improve the conventional orthopedic technology and improve the orthopedic efficiency,the pre-elastic deformation technology is proposed.Using the method of combining numerical simulation and experiment,the orthopedic effect of conventional and pre-elastic orthopedic technology is studied,and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated.The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route.The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics,can significantly improve the orthopedic efficiency,and provides a new method for deformation control in the shipbuilding industry.展开更多
The shortage of current different approaches of the vehicle license plate(VLP) tilt correction is analyzed in the paper and a new rotary correction method put forward based on the former ways of the VLP tilt correctio...The shortage of current different approaches of the vehicle license plate(VLP) tilt correction is analyzed in the paper and a new rotary correction method put forward based on the former ways of the VLP tilt correction in the horizontal direction and the vertical direction Owing to the VLP tilt taking place in the vertical direction,the array of the image’s pixels of the same column is broken,and even different rows come into being superposition.The VLP tilt taking place in the horizontal direction,by which the array of the image’s pixels of the same row broken,and so much as different columns come into being superposition.展开更多
In this paper, a surface plasmon resonance imaging(SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance(SPR) signal from the interactions between cells and different stimuli. The sys...In this paper, a surface plasmon resonance imaging(SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance(SPR) signal from the interactions between cells and different stimuli. The system is constructed with a red laser light source, a P-polarizer, a glass prism, a 5× objective lens, a charge coupled device(CCD) camera, a gold sensor chip, a polydimethylsiloxane(PDMS) reaction well and a mechanical scanning device. The system is applied to mapping living cells in response to stimuli by characterization of the refractive index(RI) changes. Cell responses to K+ in KCl solutions with concentrations of 5 mmol/L, 20 mmol/L, 50 mmol/L and 100 mmol/L are collected, which indicates that the SPRI method can distinguish the concentration of the stimuli. Furthermore, cell responses to epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) are studied independently. The binding of EGF receptor(EGFR) and EGF is collected as the first signal, and the internal change in cells is recorded as the second signal. The cell response to VEGF is different from that to EGF, which indicates that the SPRI as a label-free, real-time, fast and quantitative method has a potential to distinguish the cell responses to different stimuli.展开更多
基金Project was supported by the Ministry of Industry and Information Technology High-Tech Ship Research Project:Research on Key Common Processes of Ship Intelligent Manufacturing(MC-201704-Z02)Guangdong Special Branch Plans(2019TQ05C752)Marine Economic Development(Six Marine Industries)Special Funding Project of Guangdong Province(Grant number GDNRC[2021]46).
文摘At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large.It is difficult to control and eliminate the local convex deformation after welding.In order to improve the conventional orthopedic technology and improve the orthopedic efficiency,the pre-elastic deformation technology is proposed.Using the method of combining numerical simulation and experiment,the orthopedic effect of conventional and pre-elastic orthopedic technology is studied,and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated.The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route.The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics,can significantly improve the orthopedic efficiency,and provides a new method for deformation control in the shipbuilding industry.
文摘The shortage of current different approaches of the vehicle license plate(VLP) tilt correction is analyzed in the paper and a new rotary correction method put forward based on the former ways of the VLP tilt correction in the horizontal direction and the vertical direction Owing to the VLP tilt taking place in the vertical direction,the array of the image’s pixels of the same column is broken,and even different rows come into being superposition.The VLP tilt taking place in the horizontal direction,by which the array of the image’s pixels of the same row broken,and so much as different columns come into being superposition.
基金supported by the National Basic Research Program of China(Nos.2011CB933202 and 2014CB744600)the National High Technology Research and Development Program of China(No.2014AA022303)the National Natural Science Foundation of China(Nos.61201079,61372055,81371711 and 31100820)
文摘In this paper, a surface plasmon resonance imaging(SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance(SPR) signal from the interactions between cells and different stimuli. The system is constructed with a red laser light source, a P-polarizer, a glass prism, a 5× objective lens, a charge coupled device(CCD) camera, a gold sensor chip, a polydimethylsiloxane(PDMS) reaction well and a mechanical scanning device. The system is applied to mapping living cells in response to stimuli by characterization of the refractive index(RI) changes. Cell responses to K+ in KCl solutions with concentrations of 5 mmol/L, 20 mmol/L, 50 mmol/L and 100 mmol/L are collected, which indicates that the SPRI method can distinguish the concentration of the stimuli. Furthermore, cell responses to epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) are studied independently. The binding of EGF receptor(EGFR) and EGF is collected as the first signal, and the internal change in cells is recorded as the second signal. The cell response to VEGF is different from that to EGF, which indicates that the SPRI as a label-free, real-time, fast and quantitative method has a potential to distinguish the cell responses to different stimuli.