This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pur...This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pure jump process. Estimation of the jump intension is given out. And by different robustness test, it keeps stable. The jump size has met the condition to make interest rate within reasonable bounds and shown some meaning of economic cycle behavior. The second one is the market rate, which is estimated by spline approximation based on the transaction data of government bonds. Several models, including Vasicek model, Vasicek-GARCH (1,1) model, CIR model, and CIR-GARCH(1,1), are empirically tested and the best performance is done by the Vasicek-GARCH(1,1) model. Furthermore, the estimate bias problem due to the near unit root process is tested and evidenced by both traditional methods and GPH test. Impact of government rate on market rate is finally checked and analyzed.展开更多
We consider a modified Lnshnikov process as a model of a chemical polymer ization anf study the asymptotic behavior (in the thermodynamic limit;as N →∞)of a particular probability distribution on the set of N-dimens...We consider a modified Lnshnikov process as a model of a chemical polymer ization anf study the asymptotic behavior (in the thermodynamic limit;as N →∞)of a particular probability distribution on the set of N-dimensional vectors,tile kth component of which is the number of k-mers.The study study establisles the existence of three stages (subcritical,near-critical and supercritical stages)of polymerization,dependenting upon the ratio of association and dissociation rates of f polymers.The present paper concentrates on the analysis of tile subcritical stage.In the sibcritical.stages we show that tile size of the largest length of polymers of stize N is of the order.log N as N →+∞.展开更多
In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical pro...In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.展开更多
The flow behavior of delta-processed Inconel 718 was studied in temperature range of 900-1 060℃ and strain rate range of 0.001-0.5s-1.The effects of friction and temperature on the compressive deformation behavior we...The flow behavior of delta-processed Inconel 718 was studied in temperature range of 900-1 060℃ and strain rate range of 0.001-0.5s-1.The effects of friction and temperature on the compressive deformation behavior were investigated,and the flow stress-strain error caused by friction was revised.The results showed that the effect of the friction was obvious with increasing strain rate and decreasing deformation temperature.The revised flow stress is decreased by increasing temperature and decreasing strain rate and exhibits a typical dynamic recrystallization behavior.The constitutive model has been developed through a hyperbolic-sine Arrhenius type equation to relate the flow stress,strain rate and temperature.The influence of strain has also been incorporated by considering the variation of material constants as a function of strain.The prediction accuracy of developed constitutive model has been assessed using standard statistical formulae.According to the analysis results,the proposed deformation constitutive equation gives an accurate and precise estimate of flow stress of delta-processed Inconel 718 alloy.展开更多
Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature de...Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress-strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol^(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800-850 °C/0.001-0.010 s^(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001-0.010 s^(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s^(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.展开更多
A time series x(t), t≥1, is said to be an unstable ARMA process if x(t) satisfies an unstableARMA model such asx(t)=a_1x(t-1)+a_2x(t-2)+…+a_8x(t-s)+w(t)where w(t) is a stationary ARMA process; and the characteristic...A time series x(t), t≥1, is said to be an unstable ARMA process if x(t) satisfies an unstableARMA model such asx(t)=a_1x(t-1)+a_2x(t-2)+…+a_8x(t-s)+w(t)where w(t) is a stationary ARMA process; and the characteristic polynomial A(z)=1-a_1z-a_2z^2-…-a_3z^3 has all roots on the unit circle. Asymptotic behavior of sum form 1 to n (x^2(t)) will be studied by showing somerates of divergence of sum form 1 to n (x^2(t)). This kind of properties Will be used for getting the rates of convergenceof least squares estimates of parameters a_1, a_2,…, a_?展开更多
In order to optimize the deformation processing, the hot deformation behavior of Co-Cr-Mo-Cu (here- after named as Co-Cu) alloy was studied in this paper at a deformation temperature range of 950-1150 ℃ and a strai...In order to optimize the deformation processing, the hot deformation behavior of Co-Cr-Mo-Cu (here- after named as Co-Cu) alloy was studied in this paper at a deformation temperature range of 950-1150 ℃ and a strain rate range of 0.008-5 s^-1. Based on the true stress-true strain curves, a constitutive equation in hyperbolic sin function was established and a hot processing map was drawn. It was found that the flow stress of the Co-Cu alloy increased with the increase of the strain rate and decreased with the increase of the deforming temperature. The hot processing map indicated that there were two unstable regions and one well-processing region. The microstructure, the hardness distribution and the electro- chemical properties of the hot deformed sample were investigated in order to reveal the influence of the hot deformation. Microstructure observation indicated that the grain size increased with the increase of the deformation temperature but decreased with the increase of the strain rate. High temperature and low strain rate promoted the crystallization process but increased the grain size, which results in a reduction in the hardness. The hot deformation at high temperature (1100-1150 ℃) would reduce the corrosion resistance slightly. The final optimized deformation process was: a deformation temperature from 1050to 1100 ℃, and a strain rate from 0.008 to 0.2 s^-1, where a completely recrystallized and homogeneously distributed microstructure would be obtained.展开更多
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m...China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.展开更多
文摘This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pure jump process. Estimation of the jump intension is given out. And by different robustness test, it keeps stable. The jump size has met the condition to make interest rate within reasonable bounds and shown some meaning of economic cycle behavior. The second one is the market rate, which is estimated by spline approximation based on the transaction data of government bonds. Several models, including Vasicek model, Vasicek-GARCH (1,1) model, CIR model, and CIR-GARCH(1,1), are empirically tested and the best performance is done by the Vasicek-GARCH(1,1) model. Furthermore, the estimate bias problem due to the near unit root process is tested and evidenced by both traditional methods and GPH test. Impact of government rate on market rate is finally checked and analyzed.
文摘We consider a modified Lnshnikov process as a model of a chemical polymer ization anf study the asymptotic behavior (in the thermodynamic limit;as N →∞)of a particular probability distribution on the set of N-dimensional vectors,tile kth component of which is the number of k-mers.The study study establisles the existence of three stages (subcritical,near-critical and supercritical stages)of polymerization,dependenting upon the ratio of association and dissociation rates of f polymers.The present paper concentrates on the analysis of tile subcritical stage.In the sibcritical.stages we show that tile size of the largest length of polymers of stize N is of the order.log N as N →+∞.
文摘In this article we improve a goodness-of-fit test, of the Kolmogorov-Smirnov type, for equally distributed- but not stationary-strongly dependent data. The test is based on the asymptotic behavior of the empirical process, which is much more complex than in the classical case. Applications to simulated data and discussion of the obtained results are provided. This is, to the best of our knowledge, the first result providing a general goodness of fit test for non-weakly dependent data.
基金Sponsored by National High Technology Research and Development Program of China(2012AA03A514)Youth Scientific Research Foundation of Central South University of Forestry and Technology of China(QJ2010001A)
文摘The flow behavior of delta-processed Inconel 718 was studied in temperature range of 900-1 060℃ and strain rate range of 0.001-0.5s-1.The effects of friction and temperature on the compressive deformation behavior were investigated,and the flow stress-strain error caused by friction was revised.The results showed that the effect of the friction was obvious with increasing strain rate and decreasing deformation temperature.The revised flow stress is decreased by increasing temperature and decreasing strain rate and exhibits a typical dynamic recrystallization behavior.The constitutive model has been developed through a hyperbolic-sine Arrhenius type equation to relate the flow stress,strain rate and temperature.The influence of strain has also been incorporated by considering the variation of material constants as a function of strain.The prediction accuracy of developed constitutive model has been assessed using standard statistical formulae.According to the analysis results,the proposed deformation constitutive equation gives an accurate and precise estimate of flow stress of delta-processed Inconel 718 alloy.
基金financially supported by the Project of Introducing Talents of Discipline to Universities‘‘111’’Project(No.B08040)
文摘Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress-strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol^(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800-850 °C/0.001-0.010 s^(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001-0.010 s^(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s^(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.
文摘A time series x(t), t≥1, is said to be an unstable ARMA process if x(t) satisfies an unstableARMA model such asx(t)=a_1x(t-1)+a_2x(t-2)+…+a_8x(t-s)+w(t)where w(t) is a stationary ARMA process; and the characteristic polynomial A(z)=1-a_1z-a_2z^2-…-a_3z^3 has all roots on the unit circle. Asymptotic behavior of sum form 1 to n (x^2(t)) will be studied by showing somerates of divergence of sum form 1 to n (x^2(t)). This kind of properties Will be used for getting the rates of convergenceof least squares estimates of parameters a_1, a_2,…, a_?
基金financially supported by the National Natural Science Foundation of China (Nos. 81071262, 31271024 and 31470930)the Funding from Northeastern University ("985 program", Nos. N141008001 and LZ2014018), China
文摘In order to optimize the deformation processing, the hot deformation behavior of Co-Cr-Mo-Cu (here- after named as Co-Cu) alloy was studied in this paper at a deformation temperature range of 950-1150 ℃ and a strain rate range of 0.008-5 s^-1. Based on the true stress-true strain curves, a constitutive equation in hyperbolic sin function was established and a hot processing map was drawn. It was found that the flow stress of the Co-Cu alloy increased with the increase of the strain rate and decreased with the increase of the deforming temperature. The hot processing map indicated that there were two unstable regions and one well-processing region. The microstructure, the hardness distribution and the electro- chemical properties of the hot deformed sample were investigated in order to reveal the influence of the hot deformation. Microstructure observation indicated that the grain size increased with the increase of the deformation temperature but decreased with the increase of the strain rate. High temperature and low strain rate promoted the crystallization process but increased the grain size, which results in a reduction in the hardness. The hot deformation at high temperature (1100-1150 ℃) would reduce the corrosion resistance slightly. The final optimized deformation process was: a deformation temperature from 1050to 1100 ℃, and a strain rate from 0.008 to 0.2 s^-1, where a completely recrystallized and homogeneously distributed microstructure would be obtained.
基金support from Chinese Committee for Magnesium and its Application
文摘China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.