Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement pro...Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.展开更多
The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of t...The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations.展开更多
Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated t...Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated that average grain size became finer with the increasing number of upsetting and stretching.Especially,the size of stretching three times with upsetting twice had the most remarkable effect on refinement,and the size was only 27.36%of the original one.Moreover,the stress model was integrated into the software and finite element models were established.Simulation results demonstrated that the strain at center point of workpiece was far larger than critical strain value in each process,so that dynamic recrystallization(DRX) occurred in each workpiece,which implied DRX could occur for several times with the increasing number of upsetting and stretching,and uniform finer microstructure would be obtained.However,the results also showed that higher temperature was an unfavorable factor for grain refinement,so the times of heating should be limited for workpiece,and as many forging processes as possible should be finished in once heating.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.
基金supported by the National Natural Science Foundation of China (41472272, 41225011)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2013K015)
文摘Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.
基金jointly supported by Canadian Network for Research and Innovation in Machining TechnologyNatural Sciences and Engineering Research Council of Canada-Automotive Partnership Canada programNRCan’s Office of Energy R&D through the Program on Energy R&D
文摘The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations.
基金the National Science and Technology Major Project of China(No.2012ZX04012-011-02)the National Basic Research Program(973)of China(No.2011CB012903)
文摘Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated that average grain size became finer with the increasing number of upsetting and stretching.Especially,the size of stretching three times with upsetting twice had the most remarkable effect on refinement,and the size was only 27.36%of the original one.Moreover,the stress model was integrated into the software and finite element models were established.Simulation results demonstrated that the strain at center point of workpiece was far larger than critical strain value in each process,so that dynamic recrystallization(DRX) occurred in each workpiece,which implied DRX could occur for several times with the increasing number of upsetting and stretching,and uniform finer microstructure would be obtained.However,the results also showed that higher temperature was an unfavorable factor for grain refinement,so the times of heating should be limited for workpiece,and as many forging processes as possible should be finished in once heating.