General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has ...General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make seismic forward modeling closer to real seismic records.展开更多
The signal processing speed of spectral domain optical coherence tomography(SD-OCT)has become a bottleneck in a lot of medical applications.Recently,a time-domain interpolation method was proposed.This method can get ...The signal processing speed of spectral domain optical coherence tomography(SD-OCT)has become a bottleneck in a lot of medical applications.Recently,a time-domain interpolation method was proposed.This method can get better signal-to-noise ratio(SNR)but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zeropadding interpolation method.Additionally,the resampled data can be obtained by a few data and coefficients in the cutoff window.Thus,a lot of interpolations can be performed simultaneously.So,this interpolation method is suitable for parallel computing.By using graphics processing unit(GPU)and the compute unified device architecture(CUDA)program model,time-domain interpolation can be accelerated significantly.The computing capability can be achieved more than 250,000 A-lines,200,000 A-lines,and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L=11,L=21,and L=31,respectively.A frame SD-OCT data(400A-lines×2,048 pixel per line)is acquired and processed on GPU in real time.The results show that signal processing time of SD-OCT can befinished in 6.223 ms when the cutoff length L=21,which is much faster than that on central processing unit(CPU).Real-time signal processing of acquired data can be realized.展开更多
Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the ig...Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the igneous rocks have become interference for future explo- ration by having similar seismic reflection characteristics. Yet, the density and magnetism of organic reefs are very different from igneous rocks. It has obvious advantages to identify organic reefs and igneous rocks by gravity and magnetic data. At first, frequency decomposition was applied to the free-air gravity anomaly in Xisha area to obtain the 2D subdivision of the gravity anomaly and magnetic anomaly in the vertical direction. Thus, the dis- tribution of igneous rocks in the horizontal direction can be acquired according to high-frequency field, low-frequency field, and its physical properties. Then, 3D forward model- ing of gravitational field was carried out to establish the density model of this area by reference to physical properties of rocks based on former researches. Furthermore, 3D inversion of gravity anomaly by genetic algorithm method of the graphic processing unit (GPU) parallel processing in Xisha target area was applied, and 3D density structure of this area was obtained. By this way, we can confine the igneous rocks to the certain depth according to the density of the igneous rocks. The frequency decomposition and 3D inversion of gravity anomaly by genetic algorithm method of the GPU parallel processing proved to be a useful method for recognizing igneous rocks to its 3D geological position. So organic reefs and igneous rocks can be identified, which provide a prescient information for further exploration.展开更多
Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The b...Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.展开更多
Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/N...Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.展开更多
Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simul...Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.展开更多
Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial d...Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.展开更多
Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual ...Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.展开更多
A multi-GPU system designed for high-speed,real-time signal processing of optical coherencetomography(OCT)is described herein.For the OCT data sampled in linear wave numbers,themaximum procesing rates reached 2.95 MHz...A multi-GPU system designed for high-speed,real-time signal processing of optical coherencetomography(OCT)is described herein.For the OCT data sampled in linear wave numbers,themaximum procesing rates reached 2.95 MHz for 1024-OCT and 1.96 MHz for 2048-OCT.Data sampled using linear wavelengths were re-sampled using a time-domain interpolation method and zero-padding interpolation method to improve image quality.The maximum processing rates for1024-OCT reached 2.16 MHz for the time-domain method and 1.26 MHz for the zero-paddingmethod.The maximum processing rates for 2048-0CT reached_1.58 MHz,and 0.68 MHz,respectively.This method is capable of high-speed,real-time processing for O CT systems.展开更多
A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary netw...A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species.展开更多
In this study,insights into the effect of interfacial anisotropy on a complex hexagonal close-packed(hcp) dendritic growth during alloy solidification were gained by graphics processing unit(GPU)-accelerated three-dim...In this study,insights into the effect of interfacial anisotropy on a complex hexagonal close-packed(hcp) dendritic growth during alloy solidification were gained by graphics processing unit(GPU)-accelerated three-dimensional(3D) phase-field simulations,as demonstrated for a Mg-Gd alloy.An anisotropic phasefield model with finite interface dissipation was developed by incorporating the contribution of the anisotropy of interfacial energy into the total free energy functional.The modified spherical harmonic anisotropy function was then chosen for the hcp crystal.The GPU parallel computing algorithm was implemented in the present phase-field model,and a corresponding code was developed in the compute unified device architecture parallel computing platform.Benchmark tests indicated that the calculation efficiency of a single TESLA V100 GPU could be~80times that of open multi-processing(OpenMP) with eight central processing unit cores.By coupling the phase-field model with reliable thermodynamic and interfacial energy descriptions,the 3D phase-field simulation of α-Mg dendritic growth in the Mg-6Gd(in wt%) alloy during solidification was performed.Various two-dimensional dendrite morphologies were revealed by cutting the simulated 3D dendrite along different crystallographic planes.Typical sixfold equiaxed and butterflied microstructures observed in experiments were well reproduced.展开更多
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
We demonstrate real-time three-dimensional(3D)color video using a color electroholographic system with a cluster of multiple-graphics processing units(multi-GPU)and three spatial light modulators(SLMs)corresponding re...We demonstrate real-time three-dimensional(3D)color video using a color electroholographic system with a cluster of multiple-graphics processing units(multi-GPU)and three spatial light modulators(SLMs)corresponding respectively to red,green,and blue(RGB)-colored reconstructing lights.The multi-GPU cluster has a computer-generated hologram(CGH)display node containing a GPU,for displaying calculated CGHs on SLMs,and four CGH calculation nodes using 12 GPUs.The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing.Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.展开更多
Systems containing multiple graphics-processing-unit(GPU)clusters are difficult to use for real-time electroholography when using only a single spatial light modulator because the transfer of the computer-generated ho...Systems containing multiple graphics-processing-unit(GPU)clusters are difficult to use for real-time electroholography when using only a single spatial light modulator because the transfer of the computer-generated hologram data between the GPUs is bottlenecked.To overcome this bottleneck,we propose a rapid GPU packing scheme that significantly reduces the volume of the required data transfer.The proposed method uses a multi-GPU cluster system connected with a cost-effective gigabit Ethernet network.In tests,we achieved real-time electroholography of a three-dimensional(3D)video presenting a point-cloud 3D object made up of approximately 200,000 points.展开更多
Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional(3 D) holographic video from a point-cloud model compris...Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional(3 D) holographic video from a point-cloud model comprising a huge number of object points. To solve these problems, we implement herein a spatiotemporal division multiplexing method on a cluster system with 13 GPUs connected by a gigabit Ethernet network.A performance evaluation indicates that the proposed method can realize a real-time holographic video of a3 D object comprising ~1,200,000 object points. These results demonstrate a clear 3 D holographic video at32.7 frames per second reconstructed from a 3 D object comprising 1,064,462 object points.展开更多
The density peak (DP) algorithm has been widely used in scientific research due to its novel and effective peak density-based clustering approach. However, the DP algorithm uses each pair of data points several time...The density peak (DP) algorithm has been widely used in scientific research due to its novel and effective peak density-based clustering approach. However, the DP algorithm uses each pair of data points several times when determining cluster centers, yielding high computational complexity. In this paper, we focus on accelerating the time-consuming density peaks algorithm with a graphics processing unit (GPU). We analyze the principle of the algorithm to locate its computational bottlenecks, and evaluate its potential for parallelism. In light of our analysis, we propose an efficient parallel DP algorithm targeting on a GPU architecture and implement this parallel method with compute unified device architecture (CUDA), called the ‘CUDA-DP platform'. Specifically, we use shared memory to improve data locality, which reduces the amount of global memory access. To exploit the coalescing accessing mechanism of CPU, we convert the data structure of the CUDA-DP program from array of structures to structure of arrays. In addition, we introduce a binary search-and-sampling method to avoid sorting a large array. The results of the experiment show that CUDA-DP can achieve a 45-fold acceleration when compared to the central processing unit based density peaks implementation.展开更多
Solute transport simulations are important in water pollution events.This paper introduces a finite volume Godunovtype model for solving a 4×4 matrix form of the hyperbolic conservation laws consisting of 2D shal...Solute transport simulations are important in water pollution events.This paper introduces a finite volume Godunovtype model for solving a 4×4 matrix form of the hyperbolic conservation laws consisting of 2D shallow water equations and transport equations.The model adopts the Harten-Lax-van Leer-contact(HLLC)-approximate Riemann solution to calculate the cell interface fluxes.It can deal well with the changes in the dry and wet interfaces in an actual complex terrain,and it has a strong shock-wave capturing ability.Using monotonic upstream-centred scheme for conservation laws(MUSCL)linear reconstruction with finite slope and the Runge-Kutta time integration method can achieve second-order accuracy.At the same time,the introduction of graphics processing unit(GPU)-accelerated computing technology greatly increases the computing speed.The model is validated against multiple benchmarks,and the results are in good agreement with analytical solutions and other published numerical predictions.The third test case uses the GPU and central processing unit(CPU)calculation models which take 3.865 s and 13.865 s,respectively,indicating that the GPU calculation model can increase the calculation speed by 3.6 times.In the fourth test case,comparing the numerical model calculated by GPU with the traditional numerical model calculated by CPU,the calculation efficiencies of the numerical model calculated by GPU under different resolution grids are 9.8–44.6 times higher than those by CPU.Therefore,it has better potential than previous models for large-scale simulation of solute transport in water pollution incidents.It can provide a reliable theoretical basis and strong data support in the rapid assessment and early warning of water pollution accidents.展开更多
We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing ligh...We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.展开更多
The simulation is an important means of performance evaluation of the computer architecture. Nowadays, the serial simulation of general purpose graphics processing unit(GPGPU) architecture is the main bottleneck for t...The simulation is an important means of performance evaluation of the computer architecture. Nowadays, the serial simulation of general purpose graphics processing unit(GPGPU) architecture is the main bottleneck for the simulation speed. To address this issue, we propose the intra-kernel parallelization on a multicore processor and the inter-kernel parallelization on a multiple-machine platform. We apply these two methods to the GPGPU-sim simulator. The intra-kernel parallelization method firstly parallelizes the serial simulation of multiple compute units in one cycle. Then it parallelizes the timing and functional simulation to reduce the performance loss caused by the synchronization between different compute units. The inter-kernel parallelization method divides multiple kernels of a CUDA program into several groups and distributes these groups across multiple simulation hosts to perform the simulation. Experimental results show that the intra-kernel parallelization method achieves a speed-up of up to 12 with a maximum error rate of 0.009 4% on a 32-core machine, and the inter-kernel parallelization method can accelerate the simulation by a factor of up to 3.9 with a maximum error rate of 0.11% on four simulation hosts. The orthogonality between these two methods allows us to combine them together on multiple multi-core hosts to get further performance improvements.展开更多
Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image proc...Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image processing solutions are required to handle large scale of data.This paper introduces how maximum likelihood classification approach is parallelized for implementation on a computer cluster and a graphics processing unit to achieve high performance when processing big imagery data.The solution is scalable and satisfies the need of change detection,object identification,and exploratory analysis on large-scale high-resolution imagery data in remote sensing applications.展开更多
基金supported by the National Natural Science Foundation of China (Nos 40974066 and 40821062)National Basic Research Program of China (No 2007CB209602)
文摘General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make seismic forward modeling closer to real seismic records.
基金supported by National High Technology R&D project of China(2008AA02Z422)The Instrument Developing Project of The Chinese Academy of Sciences,Institute of Optics and Electronic,Chinese Academy of Sciences.
文摘The signal processing speed of spectral domain optical coherence tomography(SD-OCT)has become a bottleneck in a lot of medical applications.Recently,a time-domain interpolation method was proposed.This method can get better signal-to-noise ratio(SNR)but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zeropadding interpolation method.Additionally,the resampled data can be obtained by a few data and coefficients in the cutoff window.Thus,a lot of interpolations can be performed simultaneously.So,this interpolation method is suitable for parallel computing.By using graphics processing unit(GPU)and the compute unified device architecture(CUDA)program model,time-domain interpolation can be accelerated significantly.The computing capability can be achieved more than 250,000 A-lines,200,000 A-lines,and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L=11,L=21,and L=31,respectively.A frame SD-OCT data(400A-lines×2,048 pixel per line)is acquired and processed on GPU in real time.The results show that signal processing time of SD-OCT can befinished in 6.223 ms when the cutoff length L=21,which is much faster than that on central processing unit(CPU).Real-time signal processing of acquired data can be realized.
基金financially supported by the National Natural Science Foundation of China (No.41174085)
文摘Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the igneous rocks have become interference for future explo- ration by having similar seismic reflection characteristics. Yet, the density and magnetism of organic reefs are very different from igneous rocks. It has obvious advantages to identify organic reefs and igneous rocks by gravity and magnetic data. At first, frequency decomposition was applied to the free-air gravity anomaly in Xisha area to obtain the 2D subdivision of the gravity anomaly and magnetic anomaly in the vertical direction. Thus, the dis- tribution of igneous rocks in the horizontal direction can be acquired according to high-frequency field, low-frequency field, and its physical properties. Then, 3D forward model- ing of gravitational field was carried out to establish the density model of this area by reference to physical properties of rocks based on former researches. Furthermore, 3D inversion of gravity anomaly by genetic algorithm method of the graphic processing unit (GPU) parallel processing in Xisha target area was applied, and 3D density structure of this area was obtained. By this way, we can confine the igneous rocks to the certain depth according to the density of the igneous rocks. The frequency decomposition and 3D inversion of gravity anomaly by genetic algorithm method of the GPU parallel processing proved to be a useful method for recognizing igneous rocks to its 3D geological position. So organic reefs and igneous rocks can be identified, which provide a prescient information for further exploration.
文摘Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.
基金supported by the National Natural Science Foundation of China (No.11172134)the Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX13_132)
文摘Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.
基金supported by College of William and Mary,Virginia Institute of Marine Science for the study environment
文摘Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.
基金Supported by Innovative Program of the Chinese Academy of Sciences (No. KGCY-SYW-407-02)Grand International Cooperation Foundation of Shanghai Science and Technology Commission (No. 052207046)
文摘Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with in-flight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.
基金Supported by National High Technology Research and Development Program("863"Program)of China(No.863-306-ZD13-03-06)
文摘Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.
基金the support from the union project of Peking University third hospital&Chinese Academy of Sciences(Grant No.7490-04,Grant No.KJZD-EW-TZ-L03)the Sichuan Youth Science&Technology Foundation(Grant No.13QNJJ0034)+1 种基金the West Light Foundation of the Chinese Academy of Sciences,the National Major Scientific Equipment program(Grant No.2012YQ120080)the National Science Foundation of China(Grant No.6118082).
文摘A multi-GPU system designed for high-speed,real-time signal processing of optical coherencetomography(OCT)is described herein.For the OCT data sampled in linear wave numbers,themaximum procesing rates reached 2.95 MHz for 1024-OCT and 1.96 MHz for 2048-OCT.Data sampled using linear wavelengths were re-sampled using a time-domain interpolation method and zero-padding interpolation method to improve image quality.The maximum processing rates for1024-OCT reached 2.16 MHz for the time-domain method and 1.26 MHz for the zero-paddingmethod.The maximum processing rates for 2048-0CT reached_1.58 MHz,and 0.68 MHz,respectively.This method is capable of high-speed,real-time processing for O CT systems.
基金National Natural Science Foundation of China (No. 60975084)Natural Science Foundation of Fujian Province,China (No.2011J05159)
文摘A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species.
基金supported by the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (No. 2021JJ10062)National Key Research and Development Program of China (No. 2016YFB0301101)+2 种基金Science and Technology Program of Guangxi province, China (No. AB21220028)the financial support from the Fundamental Research Funds for the Central Universities of Central South University (No. 2019zzts050)Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20190106)。
文摘In this study,insights into the effect of interfacial anisotropy on a complex hexagonal close-packed(hcp) dendritic growth during alloy solidification were gained by graphics processing unit(GPU)-accelerated three-dimensional(3D) phase-field simulations,as demonstrated for a Mg-Gd alloy.An anisotropic phasefield model with finite interface dissipation was developed by incorporating the contribution of the anisotropy of interfacial energy into the total free energy functional.The modified spherical harmonic anisotropy function was then chosen for the hcp crystal.The GPU parallel computing algorithm was implemented in the present phase-field model,and a corresponding code was developed in the compute unified device architecture parallel computing platform.Benchmark tests indicated that the calculation efficiency of a single TESLA V100 GPU could be~80times that of open multi-processing(OpenMP) with eight central processing unit cores.By coupling the phase-field model with reliable thermodynamic and interfacial energy descriptions,the 3D phase-field simulation of α-Mg dendritic growth in the Mg-6Gd(in wt%) alloy during solidification was performed.Various two-dimensional dendrite morphologies were revealed by cutting the simulated 3D dendrite along different crystallographic planes.Typical sixfold equiaxed and butterflied microstructures observed in experiments were well reproduced.
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Nos.18K11399 and 19H01097)the Telecommunications Advancement Foundation.
文摘We demonstrate real-time three-dimensional(3D)color video using a color electroholographic system with a cluster of multiple-graphics processing units(multi-GPU)and three spatial light modulators(SLMs)corresponding respectively to red,green,and blue(RGB)-colored reconstructing lights.The multi-GPU cluster has a computer-generated hologram(CGH)display node containing a GPU,for displaying calculated CGHs on SLMs,and four CGH calculation nodes using 12 GPUs.The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing.Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Nos.18K11399 and 19H01097)the Telecommunications Advancement Foundation.
文摘Systems containing multiple graphics-processing-unit(GPU)clusters are difficult to use for real-time electroholography when using only a single spatial light modulator because the transfer of the computer-generated hologram data between the GPUs is bottlenecked.To overcome this bottleneck,we propose a rapid GPU packing scheme that significantly reduces the volume of the required data transfer.The proposed method uses a multi-GPU cluster system connected with a cost-effective gigabit Ethernet network.In tests,we achieved real-time electroholography of a three-dimensional(3D)video presenting a point-cloud 3D object made up of approximately 200,000 points.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(Nos.18K11399 and 19H01097)the Telecommunications Advancement Foundation
文摘Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional(3 D) holographic video from a point-cloud model comprising a huge number of object points. To solve these problems, we implement herein a spatiotemporal division multiplexing method on a cluster system with 13 GPUs connected by a gigabit Ethernet network.A performance evaluation indicates that the proposed method can realize a real-time holographic video of a3 D object comprising ~1,200,000 object points. These results demonstrate a clear 3 D holographic video at32.7 frames per second reconstructed from a 3 D object comprising 1,064,462 object points.
基金supported by the National Basic Research Program(973)of China(No.2014CB340303)the National Natural Science Foundation of China(Nos.61502509 and 61222205)+1 种基金the Program for New Century Excellent Talents in Universitythe Fok Ying-Tong Education Foundation(No.141066)
文摘The density peak (DP) algorithm has been widely used in scientific research due to its novel and effective peak density-based clustering approach. However, the DP algorithm uses each pair of data points several times when determining cluster centers, yielding high computational complexity. In this paper, we focus on accelerating the time-consuming density peaks algorithm with a graphics processing unit (GPU). We analyze the principle of the algorithm to locate its computational bottlenecks, and evaluate its potential for parallelism. In light of our analysis, we propose an efficient parallel DP algorithm targeting on a GPU architecture and implement this parallel method with compute unified device architecture (CUDA), called the ‘CUDA-DP platform'. Specifically, we use shared memory to improve data locality, which reduces the amount of global memory access. To exploit the coalescing accessing mechanism of CPU, we convert the data structure of the CUDA-DP program from array of structures to structure of arrays. In addition, we introduce a binary search-and-sampling method to avoid sorting a large array. The results of the experiment show that CUDA-DP can achieve a 45-fold acceleration when compared to the central processing unit based density peaks implementation.
基金Project supported by the National Natural Science Foundation of China(Nos.52009104 and 52079106)the Shaanxi Provincial Department of Water Resources Project(No.2017slkj-14)the Shaanxi Provincial Department of Science and Technology Project(No.2017JQ3043),China。
文摘Solute transport simulations are important in water pollution events.This paper introduces a finite volume Godunovtype model for solving a 4×4 matrix form of the hyperbolic conservation laws consisting of 2D shallow water equations and transport equations.The model adopts the Harten-Lax-van Leer-contact(HLLC)-approximate Riemann solution to calculate the cell interface fluxes.It can deal well with the changes in the dry and wet interfaces in an actual complex terrain,and it has a strong shock-wave capturing ability.Using monotonic upstream-centred scheme for conservation laws(MUSCL)linear reconstruction with finite slope and the Runge-Kutta time integration method can achieve second-order accuracy.At the same time,the introduction of graphics processing unit(GPU)-accelerated computing technology greatly increases the computing speed.The model is validated against multiple benchmarks,and the results are in good agreement with analytical solutions and other published numerical predictions.The third test case uses the GPU and central processing unit(CPU)calculation models which take 3.865 s and 13.865 s,respectively,indicating that the GPU calculation model can increase the calculation speed by 3.6 times.In the fourth test case,comparing the numerical model calculated by GPU with the traditional numerical model calculated by CPU,the calculation efficiencies of the numerical model calculated by GPU under different resolution grids are 9.8–44.6 times higher than those by CPU.Therefore,it has better potential than previous models for large-scale simulation of solute transport in water pollution incidents.It can provide a reliable theoretical basis and strong data support in the rapid assessment and early warning of water pollution accidents.
基金partially supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(C)under Grant No.15K00153
文摘We demonstrate fast time-division color etectroholography using a multiple-graphics-processing-unit (GPU) cluster system with a spatial light modulator and a controller to switch the color of the reconstructing light. The controller comprises a universal serial bus module to drive the liquid crystal optical shutters. By using the controller, the computer-generated hologram (CGH) display node of the multiple-GPU cluster system synchronizes the display of the CGH with the color switching of the reconstructing light. Fast time-division color electroholography at 20 fps is realized for a three-dimensional object comprising 21,000 points per color when 13 GPUs are used in a multiple-GPU cluster system.
基金the National Natural Science Foundation of China(Nos.61572508,61272144,61303065and 61202121)the National High Technology Research and Development Program(863)of China(No.2012AA010905)+2 种基金the Research Project of National University of Defense Technology(No.JC13-06-02)the Doctoral Fund of Ministry of Education of China(No.20134307120028)the Research Fund for the Doctoral Program of Higher Education of China(No.20114307120013)
文摘The simulation is an important means of performance evaluation of the computer architecture. Nowadays, the serial simulation of general purpose graphics processing unit(GPGPU) architecture is the main bottleneck for the simulation speed. To address this issue, we propose the intra-kernel parallelization on a multicore processor and the inter-kernel parallelization on a multiple-machine platform. We apply these two methods to the GPGPU-sim simulator. The intra-kernel parallelization method firstly parallelizes the serial simulation of multiple compute units in one cycle. Then it parallelizes the timing and functional simulation to reduce the performance loss caused by the synchronization between different compute units. The inter-kernel parallelization method divides multiple kernels of a CUDA program into several groups and distributes these groups across multiple simulation hosts to perform the simulation. Experimental results show that the intra-kernel parallelization method achieves a speed-up of up to 12 with a maximum error rate of 0.009 4% on a 32-core machine, and the inter-kernel parallelization method can accelerate the simulation by a factor of up to 3.9 with a maximum error rate of 0.11% on four simulation hosts. The orthogonality between these two methods allows us to combine them together on multiple multi-core hosts to get further performance improvements.
文摘Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image processing solutions are required to handle large scale of data.This paper introduces how maximum likelihood classification approach is parallelized for implementation on a computer cluster and a graphics processing unit to achieve high performance when processing big imagery data.The solution is scalable and satisfies the need of change detection,object identification,and exploratory analysis on large-scale high-resolution imagery data in remote sensing applications.