期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
1
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic OPTIMIZATION Taguchi method Sludge factor Chemical composition Process parameter
下载PDF
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
2
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
3
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Optimization of AZ80 magnesium alloy squeeze cast process parameters using morphological matrix 被引量:6
4
作者 郭志宏 侯华 +1 位作者 赵宇宏 屈淑维 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期411-418,共8页
The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33)... The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained. 展开更多
关键词 AZ80 magnesium alloy squeeze cast process parameters morphological matrix OPTIMIZATION
下载PDF
Effects of process parameters on mechanical properties and microstructures of creep aged 2124 aluminum alloy 被引量:7
5
作者 湛利华 李炎光 黄明辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2232-2238,共7页
A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechan... A series of tests were carried microstructures of 2124 aluminum alloy in increase of aging time, temperature and low-to-peak-to-low manner. No significant out to investigate the effects of process parameters on mechanical properties and creep aging process. The results show that creep strain and creep rate increase with the applied stress. The hardness of specimen varies with aging time and stress in a effect of temperature on hardness of material is seen in the range of 185-195 ℃. The optimum mechanical properties are obtained at the conditions of (200 MPa, 185 ℃, 8 h) as the result of the coexistence of strengthening S" and S' phases in the matrix by transmission electron microscopy (TEM). TEM observation shows that applied stress promotes the formation and growth of precioitates and no obvious stress orientation effect is observed in the matrix. 展开更多
关键词 aluminum alloy creep aging behavior age hardening mechanical property MICROSTRUCTURE process parameter
下载PDF
Grain refinement of Mg-Al alloys by optimization of process parameters based on three-dimensional finite element modeling of roll casting 被引量:2
6
作者 胡红军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期773-780,共8页
To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were est... To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy. 展开更多
关键词 magnesium alloy roll casting process parameter 3D finite element method THERMAL-STRESS
下载PDF
Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius 被引量:13
7
作者 XU Jie YANG He +1 位作者 LI Heng ZHAN Mei 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期147-156,共10页
Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of... Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced. 展开更多
关键词 thin-walled aluminum alloy tube OPTIMIZATION finite element (FE) numerical control bending processing parameters significance analysis small bending radius
下载PDF
Influence of processing parameters on the phase composition of ZrN-Si_3N_4 synthesized from zircon 被引量:10
8
作者 MA Beiyue YU Jingkun 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期367-371,共5页
The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average... The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4. 展开更多
关键词 inorganic non-metal materials nitrides carbothermal reduction-nitridation ZIRCON processing parameters phase composition
下载PDF
Effects of process parameters on microstructure and wear resistance of TiN coatings deposited on TC11 titanium alloy by electrospark deposition 被引量:10
9
作者 Xiang HONG Ke FENG +2 位作者 Ye-fa TAN Xiao-long WANG Hua TAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第8期1767-1776,共10页
In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark d... In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark deposition(ESD)were investigatedsystematically.The microstructure of the coatings was characterized for thickness(TOC),content of TiN(CON)and porosity(POC).A statistical model was developed to identify the significant factors affecting the microstructure and wear resistance of the coatings.The results show that the output voltage x and nitrogen flux l present significant effects on majority of the evaluation indexes such asTOC,friction coefficient(COF)and wear mass loss(Id),while the specific strengthening time s has a significant effect on POC and asmall effect on the other indexes.The optimal process parameters were obtained as follows:output voltage(x,60V),nitrogen flux(l,15L/min)and specific strengthening time(s,3min/cm2).The variation of wear mass loss(Id)by the variation of the outputvoltage(x)and nitrogen flux(l)is attributed to the change of wear mechanisms of TiN coatings.The main wear mechanism of TiNcoating prepared under optimal process parameters is micro-cutting wear accompanied by micro-fracture wear. 展开更多
关键词 electrospark deposition (ESD) TIN coating wear resistance statistical model process parameters
下载PDF
Process forces and heat input as function of process parameters in AA5083 friction stir welds 被引量:10
10
作者 Rajneesh KUMAR Kanwer SINGH Sunil PANDEY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期288-298,共11页
AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir... AA5083 friction stir welds were produced using systematic experimental design, the process forces and heat input with varying parameters were studied. Helpful empirical models were developed in designing friction stir welding (FSW) tools and FSW welders. These models may be further helpful for making process parameter choice for this sort of alloy, defining welding program and control of process parameters by using computer numerical control friction stir welding welders. The results show that tool rotational speed, welding speed and tool shoulder diameter are most significant parameters affecting axial force and heat input, while longitudinal force is significantly affected by welding speed and probe diameter. 展开更多
关键词 friction stir welding AA 5083 tool design heat input process forces process parameters
下载PDF
Influence of process parameters and aging treatment on the microstructure and mechanical properties of Al Si8Mg3 alloy fabricated by selective laser melting 被引量:9
11
作者 Yaoxiang Geng Hao Tang +6 位作者 Junhua Xu Yu Hou Yuxin Wang Zhen He Zhijie Zhang Hongbo Ju Lihua Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1770-1779,共10页
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M... Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM. 展开更多
关键词 AlSi8Mg3 alloy selective laser melting process parameters MICROSTRUCTURE aging treatment mechanical properties
下载PDF
Effects of Phosphoric Acid on Liquefaction of Wood in Phenol and Optimum Liquefaction Processing Parameters 被引量:17
12
作者 ZhangQiuhui ZhaoGuangjie JieShujun 《Forestry Studies in China》 CAS 2004年第3期50-54,共5页
To clarify the influencing factors of liquefaction of wood in phenol using phosphoric acid as a catalyst and get its liquefaction technology, a study on the liquefaction technology of Chinese fir (Cunninghamia lanceol... To clarify the influencing factors of liquefaction of wood in phenol using phosphoric acid as a catalyst and get its liquefaction technology, a study on the liquefaction technology of Chinese fir (Cunninghamia lanceolata) and poplar (triploid Populus tomentosa Carr) under different conditions was conducted. The results indicate that the residue rate decreases with the increase of liquefaction temperature, liquefaction time, catalyst content or liquid ratio. It is also found that the optimum condition of liquefaction for poplar is estimated as: the reaction temperature of 180 C, the reaction time of 2.5 h, liquid ratio (phenol/wood ratio) of 4.5 and catalyst content of 8%, and 4.2% residue rate could be obtained. Under the processing parameters of temperature 180 C, the reaction time of 2.5 h, liquid ratio (phenol/wood ratio) of 4 and catalyst content of 10%, the residue rate of Chinese fir can reach 5.6%. 展开更多
关键词 wood liquefaction PHENOL residue rate liquefaction processing parameters
下载PDF
Effects of processing parameters on figuration during the GMAW rapid prototyping process 被引量:7
13
作者 尹玉环 胡绳荪 +1 位作者 张晓博 何滨华 《China Welding》 EI CAS 2006年第4期30-33,共4页
As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet t... As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet transition are critical to high quality figuration. The effects of various processing parameters on figuration quality were studied in the experiment of GMA W rapid prototyping using the wire of ERSO-6 , including welding voltage, wire feeding rate, welding speed and so on. The optimal parameters for ERSO-6 are obtained. Simultaneously, it is verified that the rapid prototyping parts with favorable structures and quality can be achieved under the conditions of low heat input and stable droplet transition. 展开更多
关键词 rapid prototyping gas metal arc welding processing parameters figuration
下载PDF
Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper 被引量:4
14
作者 Esther T.AKINLABI Anthony ANDREWS Stephen A.AKINLABI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1323-1330,共8页
The influence of friction stir welding processing parameters on dissimilar joints conducted between aluminium alloy (AA5754) and commercially pure copper (C11000) was studied. The welds were produced by varying th... The influence of friction stir welding processing parameters on dissimilar joints conducted between aluminium alloy (AA5754) and commercially pure copper (C11000) was studied. The welds were produced by varying the rotational speed from 600 to 1200 r/min and the feed rate from 50 to 300 mm/min. The resulting microstructure and the corrosion properties of the welds produced were studied. It was found that the joint interfacial regions of the welds were characterized by interlayers of aluminium and copper. The corrosion tests revealed that the corrosion resistance of the welds was improved as the rotational speed was increased. The corrosion rates of the welds compared to the base metals were improved compared with Cu and decreased slightly compared with the aluminium alloy. The lowest corrosion rate was obtained at welds produced at rotational speed of 950 r/min and feed rate of 300 mm/min which corresponds to a weld produced at a low heat input. 展开更多
关键词 aluminium alloy COPPER CORROSION friction stir weld processing parameters
下载PDF
Effect of Process Parameters on Morphology and Grain Refinement Efficiency of TiAl_3 and TiB_2 in Alumimum Casting 被引量:4
15
作者 Prapas Kunnam Chaowalit Limmaneevichitr 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期54-56,共3页
This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that differ... This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency. 展开更多
关键词 Grain refinement Process parameters TIAL3 TIB2 K2TiF6 KBF4
下载PDF
Aluminum-zinc alloy squeeze casting technological parameters optimization based on PSO and ANN 被引量:4
16
作者 SHU Fu-hua 《China Foundry》 SCIE CAS 2007年第3期202-205,共4页
This paper presents a kind of ZA27 squeeze casting process parameter optimization method using artificial neural network (ANN) combined with the particle swarm optimizer (PSO). Regarding the test data as samples and u... This paper presents a kind of ZA27 squeeze casting process parameter optimization method using artificial neural network (ANN) combined with the particle swarm optimizer (PSO). Regarding the test data as samples and using neural network create ZA27 squeeze casting process parameters and mechanical properties of nonlinear mapping model. Using PSO optimize the model and obtain the optimum value of the process parameters. Make full use of the non-neural network mapping capabilities and PSO global optimization capability. The network uses the radial direction primary function neural network,using the clustering and gradient method to make use of network learning,in order to enhance the generalization ability of the network. PSO takes dynamic changing inertia weights to accelerate the convergence speed and avoid a local minimum. 展开更多
关键词 aluminum-zinc alloy squeeze casting process parameters ANN PSO
下载PDF
Effect of alloying elements and processing parameters on the Portevin–Le Chatelier effect of Al–Mg alloys 被引量:4
17
作者 Peng-cheng Ma Di Zhang +1 位作者 Lin-zhong Zhuang Ji-shan Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期175-183,共9页
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testin... The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations. 展开更多
关键词 aluminum-magnesium alloys Portevin-Le Chatelier effect alloying elements processing parameters mechanical properties
下载PDF
Optimization of investment casting process parameters to reduce warpage of turbine blade platform in DD6 alloy 被引量:4
18
作者 Jia-wei Tian Kun Bu +5 位作者 Jin-hui Song Guo-liang Tian Fei Qiu Dan-qing Zhao Zong-li Jin Yang Li 《China Foundry》 SCIE 2017年第6期469-477,共9页
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at... The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm. 展开更多
关键词 PROCAST optimization of process parameters warping deformation of platform orthogonal test genetic algorithm BP-neural network
下载PDF
Effects of process parameters on warpage of rapid heat cycle moulding plastic part 被引量:3
19
作者 刘东雷 辛勇 +1 位作者 曹文华 孙玲 《Journal of Central South University》 SCIE EI CAS 2014年第8期3024-3036,共13页
The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufac... The effects of process parameters in rapid heat cycle moulding (RHCM) on parts warpage were investigated. A vehicle-used blue-tooth front shell (consisting of ABS material) was considered as a part example manufactured by RHCM method. The corresponding rapid heat response mould with an innovational conformal heating/cooling channel system and a dynamic mould temperature control system based on the Jll-W-160 type precise temperature controller was proposed. During heating/cooling process, the mould was able to be heated from room temperature to 160 ~C in 6 s and then cooled to 80 ~C in 22 s. The effects of processing conditions in RHCM on part warpage were investigated based on the single factor experimental method and Taguchi theory. Results reveal that the elevated mould temperature reduces unwanted freezing during the injection stage, thus improving mouldability and enhancing part quality, whereas the overheated of mould temperature will lead to defective product. The feasible mould temperature scope in RHCM should be no higher than 140 ~C, and the efficient mould temperature scope should be around the polymer heat distortion temperature. Melt temperature as well as injection pressure effects on warpage can be divided into two stages The lower stage gives a no explicit effect on warpage whereas the higher stage leads to a quasi-linear downtrend. But others affect the warpage as a V-type fluctuation, reaching to the minimum around the heat distortion temperature. Under the same mould temperature condition, the effects of process parameters on warpage decrease according to the following order, packing time, packing pressure, melt temperature, injection pressure and cooling time, respectively. 展开更多
关键词 rapid heat cycle moulding plastic part process parameters WARPAGE
下载PDF
Mesoscopic-Scale Numerical Investigation Including the Influence of Process Parameters on LPBF Multi-Layer Multi-Path Formation 被引量:3
20
作者 Liu Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期5-23,共19页
As a typical laser additive manufacturing technology,laser powder bed fusion(LPBF)has achieved demonstration applications in aerospace,biomedical and other fields.However,how to select process parameters quickly and r... As a typical laser additive manufacturing technology,laser powder bed fusion(LPBF)has achieved demonstration applications in aerospace,biomedical and other fields.However,how to select process parameters quickly and reasonably is still themain concern of LPBF production.In order to quantitatively analyze the influence of different process parameters(laser power,scanning speed,hatch space and layer thickness)on the LPBF process,the multilayer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM.Based on the design of experiments method,a four-factor three-level orthogonal test scheme was designed,and the porosity and surface roughness data of each calculation scheme were extracted.By analyzing the orthogonal test data,it was found that as the laser power increased,the porosity decreased,and as the scanning speed,hatch space,and layer thickness increased,the porosity increased.In addition,the influence of laser power and scanning speed on surface roughness showed a trend of decreasing first and then increasing,while the influence of scanning distance and layer thickness on surface roughness showed amonotonous increasing trend.The order of the influence of each process parameter on porosity was:scanning speed>laying thickness>laser power>hatch space,and the order of the influence of each process parameter on surface roughness was:hatch space>layer thickness>laser power>scanning speed.So the porosity of the part is most sensitive to scanning speed,and the surface roughness is the most sensitive to hatch space.The above conclusions are expected to provide process control basis for actual LPBF production of the 316L stainless steel alloy. 展开更多
关键词 Laser powder bed fusion process parameter POROSITY surface roughness orthogonal test method numerical simulation
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部