Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These ...Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These price falls reflect uncertainties and risks associated with mining projects. In recent years, much work has been published related to the application of real options pricing theory to value life-of-mine plans in response to long term financial uncertainty and risk. However, there are uncertainties and risks associated with medium/short-term mining operations. Real options theory can also be applied to tactical decisions involving uncertainties and risks. This paper will investigate the application of real options in the mining industry and present a methodology developed at University of Queensland, Australia, for integrating real options into medium/short-term mine planning and production scheduling. A case study will demonstrate the validity and usefulness of the methodology and techniques developed.展开更多
Optimization of long-term mine production scheduling in open pit mines deals with the management of cash flows, typically in the order of hundreds of millions of dollars. Conventional mine scheduling utilizes optimiza...Optimization of long-term mine production scheduling in open pit mines deals with the management of cash flows, typically in the order of hundreds of millions of dollars. Conventional mine scheduling utilizes optimization methods that are not capable of accounting for inherent technical uncertainties such as uncertainty in the expected ore/metal supply from the underground, acknowledged to be the most critical factor. To integrate ore/metal uncertainty into the optimization of mine production scheduling a stochastic integer programming(SIP) formulation is tested at a copper deposit. The stochastic solution maximizes the economic value of a project and minimizes deviations from production targets in the presence of ore/metal uncertainty. Unlike the conventional approach, the SIP model accounts and manages risk in ore supply, leading to a mine production schedule with a 29% higher net present value than the schedule obtained from the conventional, industry-standard optimization approach, thus contributing to improving the management and sustainable utilization of mineral resources.展开更多
Oil depots along products pipelines are important components of the pipeline transportation system and down-stream markets.The operating costs of oil depots account for a large proportion of the total system’s operat...Oil depots along products pipelines are important components of the pipeline transportation system and down-stream markets.The operating costs of oil depots account for a large proportion of the total system’s operating costs.Meanwhile,oil depots and pipelines form an entire system,and each operation in a single oil depot may have influence on others.It is a tough job to make a scheduling plan when considering the factors of delivering contaminated oil and batches migration.So far,studies simultaneously considering operating constraints and contaminated oil issues are rare.Aiming at making a scheduling plan with the lowest operating costs,the paper establishes a mixed-integer linear programming model,considering a sequence of operations,such as delivery, export, blending,fractionating and exchanging operations,and batch property differences of the same oil as well as influence of batch migration on contaminated volume.Moreover,the paper verifies the linear relationship between oil concentration and blending capability by mathematical deduction.Finally,the model is successfully applied to one of the product pipelines in China and proved to be practical.展开更多
New open manufacturing environments have been proposed aiming at realizing more flexible distributed manufacturing paradigms,which can deal with not only dynamic changes in volume and variety of products,but also chan...New open manufacturing environments have been proposed aiming at realizing more flexible distributed manufacturing paradigms,which can deal with not only dynamic changes in volume and variety of products,but also changes of machining equipments,dispersals of processing locations,and also with unscheduled disruptions.This research is to develop an integrated process planning and scheduling system,which is suited to this open,dynamic,distributed manufacturing environment.Multi-agent system(MAS)approaches are used for integration of manufacturing processing planning and scheduling in an open distributed manufacturing environment,in which process planning can be adjusted dynamically and manufacturing resources can increase/decrease according to the requirements.One kind of multi-level dynamic negotiated approaches to process planning and scheduling is presented for the integration of manufacturing process planning and scheduling.展开更多
Based on the concept of operation flexibility, we study the relationship among multiple operation sequences and provide a flexibility measure for operation sequences. A criterion is proposed to prioritize each operati...Based on the concept of operation flexibility, we study the relationship among multiple operation sequences and provide a flexibility measure for operation sequences. A criterion is proposed to prioritize each operation (rather than sequence). Under the multi-agent architecture the criterion can be used to guide the decision-making procedure during production scheduling so that there is an adequate flexibility at each decision point. Experimental results demonstrate the efficiency of the criterion when it is used as a scheduling heuristic. It can increase flexibility of manufacturing systems, and consequently improve the performance of the systems.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
An integrated system for assembly planning and design (INSAPS) is presented in which product data can be exchanged between assembly planning and assembly design on the basis of standard for exchange of product data mo...An integrated system for assembly planning and design (INSAPS) is presented in which product data can be exchanged between assembly planning and assembly design on the basis of standard for exchange of product data model (STEP). The system consists of CAD system, product modeling system, assembly planning system. The product model is organized according to the STEP, uses mostly the entities of IR (integrated resources) and partly self defined entities which is necessary for assembly planning. A simple method of assembly sequence generation is presented which is suitable for complex assembly planning. The generated assembly sequences are evaluated considering the optimization of total assembly time. The results of assembly planning are feedback to the stage of assembly design to improve design.展开更多
Background: Many forested landscapes throughout the world involve a mix of public forest ownerships. This study explores how coordinated planning between two large public ownerships in Minnesota impact landscape-level...Background: Many forested landscapes throughout the world involve a mix of public forest ownerships. This study explores how coordinated planning between two large public ownerships in Minnesota impact landscape-level trade-offs between timber production and production of core area of older forest (COF) for the region. COF is an important metric for wildlife habitat. Emphasis is on better understanding potential gains from both coordinated planning at the site-level where ownerships share stand boundaries and from coordinated planning at a broader policy level involving assumed values of COF by the public. The study area involves over 300,000 ha, 150,000 analysis units and a 100-year planning horizon. Methods: The concept of influence zones in modeling spatial interdependencies is described and implemented. The estimated total area of COF is assumed an important landscape metric for forest wildlife habitat condition for each forest planning period. COF has a surrounding buffer protecting it from edge effects. Differences are recognized between COF condition requirements and condition requirements for its surrounding buffer. A spatially-explicit harvest scheduling model is applied in conjunction with moving-windows techniques of GIS to find near-optimal management schedules for the large landscape. Multiple model runs are examined to help better understand both potential gains from coordinated planning and the tradeoffs between timber and COF production. Results: Results demonstrate the ability to incorporate detailed site-level COF production into management scheduling models for broad, landscape-level planning. For the study area and the assumed COF definitions, substantially larger gains are possible by coordinating COF value assumptions across ownerships, as compared to possible gains from coordinating on-the-ground management activities in areas involving shared stand boundaries. Although a general map of the study area shows a definite intertwining mosaic of ownership by the two large public agencies, a detailed breakdown of influence zone information shows that a low percentage of the land is influenced by both of these ownerships for COF production. Conclusions: This research helps illuminate potential large gains from coordinated planning at a broad policy level by large public ownerships through coordination of assumed COF values. For the study area, these gains are substantially greater than gains from combined modeling efforts addressing spatial detail and shared stand boundaries or neighborhoods. From a practical standpoint, this is important, as spatial detail adds substantially to model size, making combined analysis a major undertaking. Detailed site-level coordination also presents operational challenges in schedule implementation.展开更多
This paper aims to develop a conceptual framework for real-time production planning and control(PPC).Firstly,we discuss the most prominently applied contemporary information and communication technologies for PPC.En...This paper aims to develop a conceptual framework for real-time production planning and control(PPC).Firstly,we discuss the most prominently applied contemporary information and communication technologies for PPC.Enterprise resource planning(ERP) systems that integrate the value chain in an enterprise,manufacturing execution systems that manage and control the production on shopfloor,and advanced planning and scheduling(APS)systems that develop solutions for complex planning problems are the planning and control systems that have been analyzed.We emphasize the application of radio frequency identification as the most advanced and promising emerging real-time data capture technology that is currently available to manufacturers.Having analyzed the features and shortcomings of the individual systems perse,and by considering the advantages that may be realized through effective integration of these otherwise discrete systems,we propose a framework for real-time PPC.展开更多
The production and maintenance functions have objectives that are often in contrast and it is essential for management to ensure that their activities are carried out synergistically,to ensure the maximum efficiency o...The production and maintenance functions have objectives that are often in contrast and it is essential for management to ensure that their activities are carried out synergistically,to ensure the maximum efficiency of the production plant as well as the minimization of management costs.The current evolution of ICT technologies and maintenance strategies in the industrial field is making possible a greater integration between production and maintenance.This work addresses this challenge by combining theknowledge of the data collected from physical assets for predictive maintenance management with the possibility of dynamic simulate the future behaviour of the manufacturing system through a digital twin for optimal management of maintenance interventions.The paper,indeed,presents a supporting digital cockpit for production and maintenance integrated scheduling.Thetool proposes an innovative approach to manage health data from machines being in any production system and provides support to compare the information about their remaining useful life(RUL)with the respective production schedule.The maintenancedriven schedulingcockpit(MDSC)offers,indeed,a supporting decision tool for the maintenance strategy to be implemented that can help production and maintenance managers in the optimal scheduling of preventive maintenance interventions based on RUL estimation.The simulation is performed by varying the production schedule with the maintenance tasks involvement;opportune decisions are taken evaluating the total costs related to the simulated strategy and the impact on the production schedule.展开更多
The EPNSim Graph was used to establish simulation models for an integrated steelmaking-casting-rolling production system.The simulation software was developed on the basis of the EPNSim Graph models and some productio...The EPNSim Graph was used to establish simulation models for an integrated steelmaking-casting-rolling production system.The simulation software was developed on the basis of the EPNSim Graph models and some production plans have been simulated with the software.The simulation results proved that the model established by EPNSim Graph is reliable.展开更多
文摘Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These price falls reflect uncertainties and risks associated with mining projects. In recent years, much work has been published related to the application of real options pricing theory to value life-of-mine plans in response to long term financial uncertainty and risk. However, there are uncertainties and risks associated with medium/short-term mining operations. Real options theory can also be applied to tactical decisions involving uncertainties and risks. This paper will investigate the application of real options in the mining industry and present a methodology developed at University of Queensland, Australia, for integrating real options into medium/short-term mine planning and production scheduling. A case study will demonstrate the validity and usefulness of the methodology and techniques developed.
基金funded from the National Science and Engineering Research Council of Canada,Collaborative R&D Grant CRDPJ 335696 with BHP Billiton and NSERC Discovery Grant 239019 to R. Dimitrakopoulos
文摘Optimization of long-term mine production scheduling in open pit mines deals with the management of cash flows, typically in the order of hundreds of millions of dollars. Conventional mine scheduling utilizes optimization methods that are not capable of accounting for inherent technical uncertainties such as uncertainty in the expected ore/metal supply from the underground, acknowledged to be the most critical factor. To integrate ore/metal uncertainty into the optimization of mine production scheduling a stochastic integer programming(SIP) formulation is tested at a copper deposit. The stochastic solution maximizes the economic value of a project and minimizes deviations from production targets in the presence of ore/metal uncertainty. Unlike the conventional approach, the SIP model accounts and manages risk in ore supply, leading to a mine production schedule with a 29% higher net present value than the schedule obtained from the conventional, industry-standard optimization approach, thus contributing to improving the management and sustainable utilization of mineral resources.
基金part of the Program of ‘‘Study of the mechanism of complex heat and mass transfer during batch transport process in product pipelines’’ funded under the National Natural Science Foundation of China, Grant Number 51474228
文摘Oil depots along products pipelines are important components of the pipeline transportation system and down-stream markets.The operating costs of oil depots account for a large proportion of the total system’s operating costs.Meanwhile,oil depots and pipelines form an entire system,and each operation in a single oil depot may have influence on others.It is a tough job to make a scheduling plan when considering the factors of delivering contaminated oil and batches migration.So far,studies simultaneously considering operating constraints and contaminated oil issues are rare.Aiming at making a scheduling plan with the lowest operating costs,the paper establishes a mixed-integer linear programming model,considering a sequence of operations,such as delivery, export, blending,fractionating and exchanging operations,and batch property differences of the same oil as well as influence of batch migration on contaminated volume.Moreover,the paper verifies the linear relationship between oil concentration and blending capability by mathematical deduction.Finally,the model is successfully applied to one of the product pipelines in China and proved to be practical.
基金International Cooperative Research Project of China(No.2006DFA73180)
文摘New open manufacturing environments have been proposed aiming at realizing more flexible distributed manufacturing paradigms,which can deal with not only dynamic changes in volume and variety of products,but also changes of machining equipments,dispersals of processing locations,and also with unscheduled disruptions.This research is to develop an integrated process planning and scheduling system,which is suited to this open,dynamic,distributed manufacturing environment.Multi-agent system(MAS)approaches are used for integration of manufacturing processing planning and scheduling in an open distributed manufacturing environment,in which process planning can be adjusted dynamically and manufacturing resources can increase/decrease according to the requirements.One kind of multi-level dynamic negotiated approaches to process planning and scheduling is presented for the integration of manufacturing process planning and scheduling.
基金This work was supported by the National Natural Science Foundation of China(Grant No.59990470) the Outstanding Youth Foundation of China(Grant No.59725514)
文摘Based on the concept of operation flexibility, we study the relationship among multiple operation sequences and provide a flexibility measure for operation sequences. A criterion is proposed to prioritize each operation (rather than sequence). Under the multi-agent architecture the criterion can be used to guide the decision-making procedure during production scheduling so that there is an adequate flexibility at each decision point. Experimental results demonstrate the efficiency of the criterion when it is used as a scheduling heuristic. It can increase flexibility of manufacturing systems, and consequently improve the performance of the systems.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
文摘An integrated system for assembly planning and design (INSAPS) is presented in which product data can be exchanged between assembly planning and assembly design on the basis of standard for exchange of product data model (STEP). The system consists of CAD system, product modeling system, assembly planning system. The product model is organized according to the STEP, uses mostly the entities of IR (integrated resources) and partly self defined entities which is necessary for assembly planning. A simple method of assembly sequence generation is presented which is suitable for complex assembly planning. The generated assembly sequences are evaluated considering the optimization of total assembly time. The results of assembly planning are feedback to the stage of assembly design to improve design.
基金funded jointly by the Minnesota Forest Resources Council,the University of Minnesota North Central ResearchOutreach Centerand the Interagency Information Cooperative of the Department of Forest Resources,University of Minnesota
文摘Background: Many forested landscapes throughout the world involve a mix of public forest ownerships. This study explores how coordinated planning between two large public ownerships in Minnesota impact landscape-level trade-offs between timber production and production of core area of older forest (COF) for the region. COF is an important metric for wildlife habitat. Emphasis is on better understanding potential gains from both coordinated planning at the site-level where ownerships share stand boundaries and from coordinated planning at a broader policy level involving assumed values of COF by the public. The study area involves over 300,000 ha, 150,000 analysis units and a 100-year planning horizon. Methods: The concept of influence zones in modeling spatial interdependencies is described and implemented. The estimated total area of COF is assumed an important landscape metric for forest wildlife habitat condition for each forest planning period. COF has a surrounding buffer protecting it from edge effects. Differences are recognized between COF condition requirements and condition requirements for its surrounding buffer. A spatially-explicit harvest scheduling model is applied in conjunction with moving-windows techniques of GIS to find near-optimal management schedules for the large landscape. Multiple model runs are examined to help better understand both potential gains from coordinated planning and the tradeoffs between timber and COF production. Results: Results demonstrate the ability to incorporate detailed site-level COF production into management scheduling models for broad, landscape-level planning. For the study area and the assumed COF definitions, substantially larger gains are possible by coordinating COF value assumptions across ownerships, as compared to possible gains from coordinating on-the-ground management activities in areas involving shared stand boundaries. Although a general map of the study area shows a definite intertwining mosaic of ownership by the two large public agencies, a detailed breakdown of influence zone information shows that a low percentage of the land is influenced by both of these ownerships for COF production. Conclusions: This research helps illuminate potential large gains from coordinated planning at a broad policy level by large public ownerships through coordination of assumed COF values. For the study area, these gains are substantially greater than gains from combined modeling efforts addressing spatial detail and shared stand boundaries or neighborhoods. From a practical standpoint, this is important, as spatial detail adds substantially to model size, making combined analysis a major undertaking. Detailed site-level coordination also presents operational challenges in schedule implementation.
基金support of the research program SFI NORMAN(Norwegian Manufacturing Future)
文摘This paper aims to develop a conceptual framework for real-time production planning and control(PPC).Firstly,we discuss the most prominently applied contemporary information and communication technologies for PPC.Enterprise resource planning(ERP) systems that integrate the value chain in an enterprise,manufacturing execution systems that manage and control the production on shopfloor,and advanced planning and scheduling(APS)systems that develop solutions for complex planning problems are the planning and control systems that have been analyzed.We emphasize the application of radio frequency identification as the most advanced and promising emerging real-time data capture technology that is currently available to manufacturers.Having analyzed the features and shortcomings of the individual systems perse,and by considering the advantages that may be realized through effective integration of these otherwise discrete systems,we propose a framework for real-time PPC.
文摘The production and maintenance functions have objectives that are often in contrast and it is essential for management to ensure that their activities are carried out synergistically,to ensure the maximum efficiency of the production plant as well as the minimization of management costs.The current evolution of ICT technologies and maintenance strategies in the industrial field is making possible a greater integration between production and maintenance.This work addresses this challenge by combining theknowledge of the data collected from physical assets for predictive maintenance management with the possibility of dynamic simulate the future behaviour of the manufacturing system through a digital twin for optimal management of maintenance interventions.The paper,indeed,presents a supporting digital cockpit for production and maintenance integrated scheduling.Thetool proposes an innovative approach to manage health data from machines being in any production system and provides support to compare the information about their remaining useful life(RUL)with the respective production schedule.The maintenancedriven schedulingcockpit(MDSC)offers,indeed,a supporting decision tool for the maintenance strategy to be implemented that can help production and maintenance managers in the optimal scheduling of preventive maintenance interventions based on RUL estimation.The simulation is performed by varying the production schedule with the maintenance tasks involvement;opportune decisions are taken evaluating the total costs related to the simulated strategy and the impact on the production schedule.
文摘The EPNSim Graph was used to establish simulation models for an integrated steelmaking-casting-rolling production system.The simulation software was developed on the basis of the EPNSim Graph models and some production plans have been simulated with the software.The simulation results proved that the model established by EPNSim Graph is reliable.