期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Surface integrity evolution during creep feed profile grinding ofγ-TiAl blade tenon
1
作者 Tao CHEN Xiaowei WANG +2 位作者 Biao ZHAO Wenfeng DING Jiuhua XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期496-512,共17页
Gamma titanium-aluminum(γ-TiAl)intermetallic compounds are increasingly used in manufacturing key hot-end components(e.g.,blade tenon)in aero engines due to their high specific strength and lightweight properties.Cre... Gamma titanium-aluminum(γ-TiAl)intermetallic compounds are increasingly used in manufacturing key hot-end components(e.g.,blade tenon)in aero engines due to their high specific strength and lightweight properties.Creep feed profile grinding(CFPG)as a crucial precision process that is applied to produce the final profile of the blade tenon.However,sudden surface burns and microcracks of machined c-TiAl blade tenon often occur because of its low plasticity and high strength during grinding processes,leading to poor surface integrity.In this work,CFPG experiments based on the profile characteristics ofγ-TiAl blade tenon were performed and an associated undeformed chip thickness model considering grain–workpiece contact condition was established to explore the evolution of the surface integrity.Subsequently,the surface integrity was analyzed at different positions of the blade tenon in terms of surface roughness and morphology,metallographic structure,microhardness,and residual stress.Results show that the profile characteristics of blade tenon have a significant influence on machined surface integrity because of the thermomechanical effect at various detecting positions.The residual stress was established based on the undeformed chip thickness model considering the profile structure,with a prediction error of 10%–15%.The thermomechanical effect is more obvious at the bottom area,where the surface roughness,work hardening degree,and subsurface plastic deformation range are the largest,while the values at the bevel area are the smallest.Based on the undeformed chip thickness model,a residual stress finite element simulation was conducted by employing thermomechanical coupled effects.In addition,the error between the simulation and the experiment was between 10%–15%.Strain and strain rate equations were established through the relationship between material displacement and depth.The average strain and strain rate of the ground surface when ap is 1.0 mm are 18.8%and 33.2%larger than when ap is 0.5 mm,respectively.This study deepens the understanding of surface integrity under the influence of CFPGγ-TiAl and provides a practical reference and theoretical basis for realizing high-quality profile grinding of other complex parts. 展开更多
关键词 Gamma titanium-aluminum intermetallic compounds Blade tenon Creep feed profile grinding Surface integrity Thermomechanical effect
原文传递
Study on a probabilistic algorithm for the forming and 3D characterization of special-shaped surfaces under profile grinding
2
作者 Zhao-Qing Zhang Kai-Ning Shi +3 位作者 Yao-Yao Shi Yi-Hui Song Zhe He Ya-Song Pu 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第2期288-299,共12页
Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process le... Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process lead to complex surface characteristics.In this study,the structural and probabilistic characteristics of the profile grinding of a special-shaped surface were analyzed,and a probabilistic algorithm for the forming and 3D characterization of special-shaped surfaces under profile grinding was developed.The forming process of a GH738 blade tenon tooth surface was considered as an example to demonstrate the algorithm.The comparison results showed that the simulation results had similar surface characteristics to the measurement results,and the relative error range of the 3D roughness parameter was 0.21%–19.76%,indicating an accurate prediction and characterization of the complex special-shaped surface under the action of multiple factors. 展开更多
关键词 Special-shaped surface profile grinding Surface morphology 3D characterization
原文传递
Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels 被引量:16
3
作者 Qing MIAO Wenfeng DING +1 位作者 Weijie KUANG Changyong YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期576-585,共10页
Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surf... Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles. 展开更多
关键词 Creep feed profile grinding Fir-tree blade root grinding force Single crystal nickel-based superalloy Surface quality
原文传递
Fretting wear behaviour of machined layer of nickel-based superalloy produced by creep-feed profile grinding 被引量:4
4
作者 Weijie KUANG Qing MIAO +4 位作者 Wenfeng DING Yanjun ZHAO Biao ZHAO Xuebing WEN Shaopeng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期401-411,共11页
Fretting wear has an adverse impact on the fatigue life of turbine blade roots.The current work is to comparatively investigate the fretting wear behaviour of the nickel-based superalloy surfaces produced by polishing... Fretting wear has an adverse impact on the fatigue life of turbine blade roots.The current work is to comparatively investigate the fretting wear behaviour of the nickel-based superalloy surfaces produced by polishing and creep-feed profile grinding,respectively,in terms of surface/subsurface fretting damage,the friction coefficient,wear volume and wear rate.Experimental results show that the granulated tribolayer aggravates the workpiece wear,while the flat compacted tribolayer enhances the wear resistance ability of workpiece,irrespective of whether the workpiece is processed by polishing or grinding.However,the wear behaviors of tribolayers are different.For the polished surface,when the normal load exceeds 100 N,the main defects are crack,rupture,delamination and peeling of workpiece materials;the wear mechanism changes from severe oxidative wear to fatigue wear and abrasive wear when the loads increase from 50 to 180 N.As for the ground surface,the main wear mechanism is abrasive wear.Particularly,the ground surface possesses better wear-resistant ability than the polished surface because the former has the lower values in coefficient friction(0.23),wear volume(0.06×10^(6)μm^(3))and wear rate(0.25×10^(-16)Pa^(-1)).Finally,an illustration is given to characterize the evolution of wear debris on such nickel-based superalloy on the ground surface. 展开更多
关键词 Creep-feed profile grinding Fretting wear Nickel-based superalloy TRIBOLAYER Wear debris
原文传递
Experimental Research on the Ground Surface Quality of Creep Feed Ultrasonic Grinding Ceramics (Al_2O_3) 被引量:5
5
作者 郑建新 徐家文 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期359-365,共7页
In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with an... In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out. 展开更多
关键词 CERAMICS ultrasonic grinding creep feed grinding surface quality profile grinding
下载PDF
Computer Aided Design of Grinding Wheel for Drill Flute Production
6
作者 Janko Jovanovic Obrad Spaic +1 位作者 Radoslav Tomovic Rade Ivankovic 《Journal of Mechanics Engineering and Automation》 2014年第9期709-715,共7页
Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills us... Twist drill flute profile design is necessary in order to determine the required grinding wheel profile for a flute production. An accurate drill flute profile design is generated for two-flute conical twist drills using analytical equations to generate a drill flute profile design needed for the production of twist drills with straight lips. The required grinding wheel profile for a flute production was expressed in digitized form as well as in terms of two curve-fitted circular arcs. The drill flute profile geometry can never be precisely generated when required grinding wheel profile is represented by two circular arcs and the generated flute profile is just a very good approximation of the design flute profile. A CAD (computer aided design) software has been developed using MATLAB to determine the required grinding wheel profile for generating a given drill flute profile design. 展开更多
关键词 grinding wheel profile drill flute profile twist drill CAD.
下载PDF
Design and grindability assessment with cup shaped electroplated CBN wheel grinding turbine disc slots of powder metallurgy superalloy FGH96
7
作者 Benkai LI Wenfeng DING +6 位作者 YeJun ZHU Changhe LI Yanbin ZHANG Min YANG Xiao MA Mingzheng LIU Xin CUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期521-534,共14页
The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge... The machining surface integrity of aero-engine turbine disc slots has a significant impact on their fatigue life and service performance,and achieving efficiency and high-precision machining is still a great challenge.The high machining requirements of future aeroengine turbine disc slots will be difficult to satisfy using the broaching method.In addition,existing methods of slot machin-ing face difficulties in ensuring surface integrity.This study explored a cup shaped electroplated Cubic Boron Nitride(CBN)abrasive wheel for profile grinding the turbine disc slots of FGH96 powder metallurgy superalloy.The matrix structure of the cup shaped abrasive wheel was designed and verified.A profile grinding experiment was conducted for fir-tree slots on a five-axis machining center.The accuracy and the surface integrity were analyzed.Results show that the key dimension detection results of the slots were within the allowable tolerance range.Meanwhile,an average sur-face roughness Ra of 0.55μm was achieved,the residual stress was compressive,the plastic defor-mation layer thickness was less than 5μm,and the hardening layer thickness was less than 20μm.The research findings provide a new approach to machining the slots of aviation engine turbine discs and guidance for the high-quality processing of complex components. 展开更多
关键词 profile grinding Surface integrity Cup shaped CBN abrasive wheel Turbine disc slots FGH96
原文传递
Technology Research on Aviation Piston Engine Camshaft Repair
8
《International English Education Research》 2013年第12期201-203,共3页
Based on the analysis of the piston engine camshatt common failure mode, combining the mechanical analysis and risk management means, the feasibility of its repair was much discussed, the repair technique are studied,... Based on the analysis of the piston engine camshatt common failure mode, combining the mechanical analysis and risk management means, the feasibility of its repair was much discussed, the repair technique are studied, and proved its correctness and effectiveness. 展开更多
关键词 Piston Engine Camshaft FAILURE profile grinding Risk Analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部