AIM To investigate the clinicopathological significance of progesterone receptor membrane component 1(PGRMC1) and PGRMC2 in hepatocellular carcinoma(HCC). METHODS We performed immunohistochemical staining to evaluate ...AIM To investigate the clinicopathological significance of progesterone receptor membrane component 1(PGRMC1) and PGRMC2 in hepatocellular carcinoma(HCC). METHODS We performed immunohistochemical staining to evaluate the estrogen receptor(ER), progesterone receptor(PR), PGRMC1, and PGRMC2 in a clinical cohort consisting of 89 paired HCC and non-tumor liver samples. We also analyzed HCC data(n = 373) from The Cancer Genome Atlas(TCGA). We correlated the expression status of PGRMC1 and PGRMC2 with clinicopathological indicators and the clinical outcomes of the HCC patients. We knocked down or overexpressed PGRMC1 in HCC cell lines to evaluate its biological significance in HCC cell proliferation, differentiation, migration, and invasion. RESULTS We found that few HCC cases expressed ER(5.6%) and PR(4.5%). In contrast, most HCC cases expressed PGRMC1(89.9%) and PGRMC2(100%). PGRMC1 and PGRMC2 exhibited significantly lower expression in tumor tissue than in non-tumor tissue(P < 0.001). Lower PGRMC1 expression in HCC was significantly associated with higher serum alpha-fetoprotein expression(P = 0.004), poorer tumor differentiation(P = 0.045) and liver capsule penetration(P = 0.038). Low PGRMC1 expression was an independent predictor for worse disease-free survival(P = 0.002, HR = 2.384,CI: 1.377-4.128) in our cases, as well as in the TCGA cohort(P < 0.001, HR = 2.857, CI: 1.781-4.584). The expression of PGRMC2 did not relate to patient outcome. PGRMC1 knockdown promoted a poorly differentiated phenotype and proliferation of HCC cells in vitro, while PGRMC1 overexpression caused the opposite effects.CONCLUSION PGRMC1 is a non-classical hormonal receptor that negatively regulates hepatocarcinogenesis. PGRMC1 down-regulation is associated with progression of HCC and is a poor prognostic indicator.展开更多
Introduction: Canine mammary gland tumor is the most common type of neoplasia in non-ovariectomized bitches. Approximately 50% of tumors are malignant. Neoplasms originating from the mammary gland represent the most c...Introduction: Canine mammary gland tumor is the most common type of neoplasia in non-ovariectomized bitches. Approximately 50% of tumors are malignant. Neoplasms originating from the mammary gland represent the most common neoplastic disease in canines in Veterinary Medicine. Aim: Relate the expression of the receptor to progesterone (PR) with the tumor stage of canine mammary carcinoma. Material and Methods: Analytical-cross-sectional study, samples of paraffinized tumor tissue obtained from 30 canine patients with breast cancer were used. The expression of PR was performed by immunohistochemical labeling, using murine anti-PR (anti-PR Biocare brand). A descriptive analysis was carried out with the results using the SPSS program. Results: The predominant histological subtype of breast cancer was tubular carcinoma with 12 patients, followed by papillary cystic carcinoma with 6 patients, solid carcinoma 5, carcinosarcoma 4 and comedocarcinoma 3. There was a significant trend between breast cancer subtypes, histological grade G1. Among the histopathological findings, the degree of invasion is related to the presence of tumor cells in adjacent lymph nodes, which is why it is a prognostic indicator. The expression of PR in the tumor tissue samples it was 42.8% positive versus 57.14% negative, of which 75% correspond to G1, 8.3% to G2 and 16.6% to G3. With respect to the relationship of the expression of PR vs type of tumor, it was found that 50% correspond to tubular carcinoma, 33.3% to papillary cystic carcinoma, 8.3% to solid carcinoma and 8.3% to comedocarcinoma. Conclusion: The hormone receptor was negative in more than half of the patients and histological grade is significantly associated with tumor subtypes, this study emphasizes the need to introduce receptor testing into our routine clinical practice to offer the best treatment for breast cancer.展开更多
Background:Ultrasound-triggered microbubble destruction(UTMD) is a widely used noninvasive technology in both military and civilian medicine,which could enhance radiosensitivity of various tumors.However,little inform...Background:Ultrasound-triggered microbubble destruction(UTMD) is a widely used noninvasive technology in both military and civilian medicine,which could enhance radiosensitivity of various tumors.However,little information is available regarding the effects of UTMD on radiotherapy for glioblastoma or the underlying mechanism.This study aimed to delineate the effect of UTMD on the radiosensitivity of glioblastoma and the potential involvement of autophagy.Methods:GL261,U251 cells and orthotopic glioblastoma-bearing mice were treated with ionizing radiation(IR) or IR plus UTMD.Autophagy was observed by confocal microscopy and transmission electron microscopy.Western blotting and immunofluorescence analysis were used to detect progesterone receptor membrane component 1(PGRMC1),light chain 3 beta 2(LC3B2) and sequestosome 1(SQSTM1/p62) levels.Lentiviral vectors or siRNAs transfection,and fluorescent probes staining were used to explore the underlying mechanism.Results:UTMD enhanced the radiosensitivity of glioblastoma in vitro and in vivo(P<0.01).UTMD inhibited autophagic flux by disrupting autophagosome-lysosome fusion without impairing lysosomal function or autophagosome synthesis in IR-treated glioblastoma cells.Suppression of autophagy by 3-methyladenine,bafilomycin A1 or ATG5 siRNA had no significant effect on UTMD-induced radiosensitization in glioblastoma cells(P<0.05).Similar results were found when autophagy was induced by rapamycin or ATG5 overexpression(P>0.05).Furthermore,UTMD inhibited PGRMC1expression and binding with LC3B2 in IR-exposed glioblastoma cells(P<0.01).PGRMC1 inhibitor AG-205 or PGRMC1siRNA pretreatment enhanced UTMD-induced LC3B2 and p62 accumulation in IR-exposed glioblastoma cells,thereby promoting UTMD-mediated radiosensitization(P<0.05).Moreover,PGRMC1 overexpression abolished UTMD-caused blockade of autophagic degradation,subsequently inhibiting UTMD-induced radiosensitization of glioblastoma cells.Finally,compared with IR plus UTMD group,PGRMC1 overexpression significantly increased tumor size [(3.8±1.1) mm^(2)vs.(8.0±1.9) mm^(2),P<0.05] and decreased survival time [(67.2±2.6) d vs.(40.0±1.2) d,P=0.0026] in glioblastoma-bearing mice.Conclusions:UTMD enhanced the radiosensitivity of glioblastoma partially by disrupting PGRMC1-mediated autophagy.展开更多
基金Supported by the Ministry of Science and Technology,No.NSC102-2320-B-006-011.,No.MOST103-2320-B-006-021-MY2,and No.MOST105-2320-B-006-033 to Tsai HWNational Cheng Kung University Hospital,Taiwan,No.NCKUH-10406002 and No.NCKUH-10509001 to Tsai HW
文摘AIM To investigate the clinicopathological significance of progesterone receptor membrane component 1(PGRMC1) and PGRMC2 in hepatocellular carcinoma(HCC). METHODS We performed immunohistochemical staining to evaluate the estrogen receptor(ER), progesterone receptor(PR), PGRMC1, and PGRMC2 in a clinical cohort consisting of 89 paired HCC and non-tumor liver samples. We also analyzed HCC data(n = 373) from The Cancer Genome Atlas(TCGA). We correlated the expression status of PGRMC1 and PGRMC2 with clinicopathological indicators and the clinical outcomes of the HCC patients. We knocked down or overexpressed PGRMC1 in HCC cell lines to evaluate its biological significance in HCC cell proliferation, differentiation, migration, and invasion. RESULTS We found that few HCC cases expressed ER(5.6%) and PR(4.5%). In contrast, most HCC cases expressed PGRMC1(89.9%) and PGRMC2(100%). PGRMC1 and PGRMC2 exhibited significantly lower expression in tumor tissue than in non-tumor tissue(P < 0.001). Lower PGRMC1 expression in HCC was significantly associated with higher serum alpha-fetoprotein expression(P = 0.004), poorer tumor differentiation(P = 0.045) and liver capsule penetration(P = 0.038). Low PGRMC1 expression was an independent predictor for worse disease-free survival(P = 0.002, HR = 2.384,CI: 1.377-4.128) in our cases, as well as in the TCGA cohort(P < 0.001, HR = 2.857, CI: 1.781-4.584). The expression of PGRMC2 did not relate to patient outcome. PGRMC1 knockdown promoted a poorly differentiated phenotype and proliferation of HCC cells in vitro, while PGRMC1 overexpression caused the opposite effects.CONCLUSION PGRMC1 is a non-classical hormonal receptor that negatively regulates hepatocarcinogenesis. PGRMC1 down-regulation is associated with progression of HCC and is a poor prognostic indicator.
文摘Introduction: Canine mammary gland tumor is the most common type of neoplasia in non-ovariectomized bitches. Approximately 50% of tumors are malignant. Neoplasms originating from the mammary gland represent the most common neoplastic disease in canines in Veterinary Medicine. Aim: Relate the expression of the receptor to progesterone (PR) with the tumor stage of canine mammary carcinoma. Material and Methods: Analytical-cross-sectional study, samples of paraffinized tumor tissue obtained from 30 canine patients with breast cancer were used. The expression of PR was performed by immunohistochemical labeling, using murine anti-PR (anti-PR Biocare brand). A descriptive analysis was carried out with the results using the SPSS program. Results: The predominant histological subtype of breast cancer was tubular carcinoma with 12 patients, followed by papillary cystic carcinoma with 6 patients, solid carcinoma 5, carcinosarcoma 4 and comedocarcinoma 3. There was a significant trend between breast cancer subtypes, histological grade G1. Among the histopathological findings, the degree of invasion is related to the presence of tumor cells in adjacent lymph nodes, which is why it is a prognostic indicator. The expression of PR in the tumor tissue samples it was 42.8% positive versus 57.14% negative, of which 75% correspond to G1, 8.3% to G2 and 16.6% to G3. With respect to the relationship of the expression of PR vs type of tumor, it was found that 50% correspond to tubular carcinoma, 33.3% to papillary cystic carcinoma, 8.3% to solid carcinoma and 8.3% to comedocarcinoma. Conclusion: The hormone receptor was negative in more than half of the patients and histological grade is significantly associated with tumor subtypes, this study emphasizes the need to introduce receptor testing into our routine clinical practice to offer the best treatment for breast cancer.
基金supported by the National Natural Science Foundation of China (82073544 and 81971774)the Chongqing Talent Project (CQYC2019)the Chongqing Chief Expert Program in Medicine (CQYC2018)。
文摘Background:Ultrasound-triggered microbubble destruction(UTMD) is a widely used noninvasive technology in both military and civilian medicine,which could enhance radiosensitivity of various tumors.However,little information is available regarding the effects of UTMD on radiotherapy for glioblastoma or the underlying mechanism.This study aimed to delineate the effect of UTMD on the radiosensitivity of glioblastoma and the potential involvement of autophagy.Methods:GL261,U251 cells and orthotopic glioblastoma-bearing mice were treated with ionizing radiation(IR) or IR plus UTMD.Autophagy was observed by confocal microscopy and transmission electron microscopy.Western blotting and immunofluorescence analysis were used to detect progesterone receptor membrane component 1(PGRMC1),light chain 3 beta 2(LC3B2) and sequestosome 1(SQSTM1/p62) levels.Lentiviral vectors or siRNAs transfection,and fluorescent probes staining were used to explore the underlying mechanism.Results:UTMD enhanced the radiosensitivity of glioblastoma in vitro and in vivo(P<0.01).UTMD inhibited autophagic flux by disrupting autophagosome-lysosome fusion without impairing lysosomal function or autophagosome synthesis in IR-treated glioblastoma cells.Suppression of autophagy by 3-methyladenine,bafilomycin A1 or ATG5 siRNA had no significant effect on UTMD-induced radiosensitization in glioblastoma cells(P<0.05).Similar results were found when autophagy was induced by rapamycin or ATG5 overexpression(P>0.05).Furthermore,UTMD inhibited PGRMC1expression and binding with LC3B2 in IR-exposed glioblastoma cells(P<0.01).PGRMC1 inhibitor AG-205 or PGRMC1siRNA pretreatment enhanced UTMD-induced LC3B2 and p62 accumulation in IR-exposed glioblastoma cells,thereby promoting UTMD-mediated radiosensitization(P<0.05).Moreover,PGRMC1 overexpression abolished UTMD-caused blockade of autophagic degradation,subsequently inhibiting UTMD-induced radiosensitization of glioblastoma cells.Finally,compared with IR plus UTMD group,PGRMC1 overexpression significantly increased tumor size [(3.8±1.1) mm^(2)vs.(8.0±1.9) mm^(2),P<0.05] and decreased survival time [(67.2±2.6) d vs.(40.0±1.2) d,P=0.0026] in glioblastoma-bearing mice.Conclusions:UTMD enhanced the radiosensitivity of glioblastoma partially by disrupting PGRMC1-mediated autophagy.