Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ...Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.展开更多
Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of r...Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of rocks,taking into account the influence of rock genesis on their mechanical behavior during the model building process.A true triaxial strength criterion based on the GEP model for igneous,metamorphic and magmatic rocks was obtained by training the model using collected data.Compared to the modified Weibols-Cook criterion,the modified Mohr-Coulomb criterion,and the modified Lade criterion,the strength criterion based on the GEP model exhibits superior prediction accuracy performance.The strength criterion based on the GEP model has better performance in R2,RMSE and MAPE for the data set used in this study.Furthermore,the strength criterion based on the GEP model shows greater stability in predicting the true triaxial strength of rocks across different types.Compared to the existing strength criterion based on the genetic programming(GP)model,the proposed criterion based on GEP model achieves more accurate predictions of the variation of true triaxial strength(s1)with intermediate principal stress(s2).Finally,based on the Sobol sensitivity analysis technique,the effects of the parameters of the three obtained strength criteria on the true triaxial strength of the rock are analysed.In general,the proposed strength criterion exhibits superior performance in terms of both accuracy and stability of prediction results.展开更多
Themulti-skill resource-constrained project scheduling problem(MS-RCPSP)is a significantmanagement science problem that extends from the resource-constrained project scheduling problem(RCPSP)and is integrated with a r...Themulti-skill resource-constrained project scheduling problem(MS-RCPSP)is a significantmanagement science problem that extends from the resource-constrained project scheduling problem(RCPSP)and is integrated with a real project and production environment.To solve MS-RCPSP,it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme.This paper proposes an improved gene expression programming(IGEP)approach to explore newly dispatching rules that can broadly solve MS-RCPSP.A new backward traversal decoding mechanism,and several neighborhood operators are applied in IGEP.The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process,and improves the algorithm’s performance.Several neighborhood operators improve the exploration of the potential search space.The experiment takes the intelligent multi-objective project scheduling environment(iMOPSE)benchmark dataset as the training set and testing set of IGEP.Ten newly dispatching rules are discovered and extracted by IGEP,and eight out of ten are superior to other typical dispatching rules.展开更多
In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(G...In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(GEP) as a gray-box modeling approach is used to develop different deterministic models in order to evaluate the occurrence of soil liquefaction in terms of liquefaction field performance indicator(LI) and factor of safety(FS) in logistic regression and classification concepts.The comparative plots illustrate that the classification concept-based models show a better performance than those based on logistic regression.In the probabilistic approach,a calibrated mapping function is developed in the context of Bayes’ theorem in order to capture the failure probabilities(PL) in the absence of the knowledge of parameter uncertainty.Consistent results obtained from the proposed probabilistic models,compared to the most well-known models,indicate the robustness of the methodology used in this study.The probability models provide a simple,but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds.展开更多
In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select...In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.展开更多
Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high...Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated.展开更多
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p...Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.展开更多
This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality ...This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality reduction algorithm of hyperspectral data based on dependence degree(DRNDDD) is proposed to reduce the redundant hyperspectral band. DRND-DD solves the selection of suitable hyperspectral band via rough set theory. Furthermore, to improve the computation speed and accuracy of the model, based on DRND-DD, this paper proposes reflectance estimation model mining of leaf nitrogen concentration(LNC) for hyperspectral data by using hybrid gene expression programming(REMLNC-HGEP). Experimental results on three datasets demonstrate that the DRND-DD algorithm can obtain good results with a very short running time compared with principal component analysis(PCA), singular value decomposition(SVD), a dimensionality reduction algorithm based on the positive region(AR-PR) and a dimensionality reduction algorithm based on a discernable matrix(ARDM), and REMLNC-HGEP has low average time-consumption, high model mining success ratio and estimation accuracy. It was concluded that the REMLNC-HGEP performs better than the regression methods.展开更多
The shear stress distribution in circular channels was modeled in this study using gene expression programming(GEP). 173 sets of reliable data were collected under four flow conditions for use in the training and test...The shear stress distribution in circular channels was modeled in this study using gene expression programming(GEP). 173 sets of reliable data were collected under four flow conditions for use in the training and testing stages. The effect of input variables on GEP modeling was studied and 15 different GEP models with individual, binary, ternary, and quaternary input combinations were investigated. The sensitivity analysis results demonstrate that dimensionless parameter y/P, where y is the transverse coordinate, and P is the wetted perimeter, is the most influential parameter with regard to the shear stress distribution in circular channels. GEP model 10, with the parameter y/P and Reynolds number(Re) as inputs, outperformed the other GEP models, with a coefficient of determination of 0.7814 for the testing data set. An equation was derived from the best GEP model and its results were compared with an artificial neural network(ANN) model and an equation based on the Shannon entropy proposed by other researchers. The GEP model, with an average RMSE of 0.0301, exhibits superior performance over the Shannon entropy-based equation, with an average RMSE of 0.1049, and the ANN model, with an average RMSE of 0.2815 for all flow depths.展开更多
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring.Also,local scouring occurs around the submerged vanes over time,and identifying the effective factors on the scour...Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring.Also,local scouring occurs around the submerged vanes over time,and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering.The most important aimof this study is investigation of scour pattern around submerged vanes located in 180°bend experimentally and numerically.Firstly,the effects of various parameters such as the Froude number(Fr),angle of submerged vanes to the flow(α),angle of submerged vane location in the bend(θ),distance between submerged vanes(d),height(H),and length(L)of the vanes on the dimensionless volume of the scour hole were experimentally studied.The submerged vanes were installed on a 180°bend whose central radius and channel width were 2.8 and 0.6 m,respectively.By reducing the Froude number,the scour hole volume decreased.For all Froude numbers,the biggest scour hole formed atθ=15°.In all models,by increasing the Froude number,the scour hole volume significantly increases.In addition,by increasing the submerged vanes’length and height,the scour hole dimensions also grow.Secondly,using gene expression programming(GEP),a relationship for determining the scour hole volume around the submerged vanes was provided.For this model,the determination coefficients(R2)for the training and test modes were computed as 0.91 and 0.9,respectively.In addition,this study performed partial derivative sensitivity analysis(PDSA).According to the results,the PDSA was calculated as positive for all input variables.展开更多
The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(...The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.展开更多
文摘Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.
基金supported by the National Natural Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Innovation-Driven Project of Central South University(Grant No.2020CX040).
文摘Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of rocks,taking into account the influence of rock genesis on their mechanical behavior during the model building process.A true triaxial strength criterion based on the GEP model for igneous,metamorphic and magmatic rocks was obtained by training the model using collected data.Compared to the modified Weibols-Cook criterion,the modified Mohr-Coulomb criterion,and the modified Lade criterion,the strength criterion based on the GEP model exhibits superior prediction accuracy performance.The strength criterion based on the GEP model has better performance in R2,RMSE and MAPE for the data set used in this study.Furthermore,the strength criterion based on the GEP model shows greater stability in predicting the true triaxial strength of rocks across different types.Compared to the existing strength criterion based on the genetic programming(GP)model,the proposed criterion based on GEP model achieves more accurate predictions of the variation of true triaxial strength(s1)with intermediate principal stress(s2).Finally,based on the Sobol sensitivity analysis technique,the effects of the parameters of the three obtained strength criteria on the true triaxial strength of the rock are analysed.In general,the proposed strength criterion exhibits superior performance in terms of both accuracy and stability of prediction results.
基金funded by the National Natural Science Foundation of China(Nos.51875420,51875421,52275504).
文摘Themulti-skill resource-constrained project scheduling problem(MS-RCPSP)is a significantmanagement science problem that extends from the resource-constrained project scheduling problem(RCPSP)and is integrated with a real project and production environment.To solve MS-RCPSP,it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme.This paper proposes an improved gene expression programming(IGEP)approach to explore newly dispatching rules that can broadly solve MS-RCPSP.A new backward traversal decoding mechanism,and several neighborhood operators are applied in IGEP.The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding process,and improves the algorithm’s performance.Several neighborhood operators improve the exploration of the potential search space.The experiment takes the intelligent multi-objective project scheduling environment(iMOPSE)benchmark dataset as the training set and testing set of IGEP.Ten newly dispatching rules are discovered and extracted by IGEP,and eight out of ten are superior to other typical dispatching rules.
文摘In this context,two different approaches of soil liquefaction evaluation using a soft computing technique based on the worldwide standard penetration test(SPT) databases have been studied.Gene expression programming(GEP) as a gray-box modeling approach is used to develop different deterministic models in order to evaluate the occurrence of soil liquefaction in terms of liquefaction field performance indicator(LI) and factor of safety(FS) in logistic regression and classification concepts.The comparative plots illustrate that the classification concept-based models show a better performance than those based on logistic regression.In the probabilistic approach,a calibrated mapping function is developed in the context of Bayes’ theorem in order to capture the failure probabilities(PL) in the absence of the knowledge of parameter uncertainty.Consistent results obtained from the proposed probabilistic models,compared to the most well-known models,indicate the robustness of the methodology used in this study.The probability models provide a simple,but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds.
基金The Spring Plan of Ministry of Education,China(No.Z2012017)
文摘In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.
文摘Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated.
文摘Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors.
基金support by National Natural Science Foundation of China(61202354,51507084)Nanjing University of Post and Telecommunications Science Foundation(NUPTSF)(NT214203)
基金supported in part by the National Natural Science Foundation of China (11&zd167, 51507084, 61572262)NSF of Jiangsu Province (BK20141427)+2 种基金NUPT (NY214097)Open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (NUPT), Ministry of Education (NYKL201507)Qinlan Project of Jiangsu Province and the General Project of National Natural Science Found of China under Grant 41471300
文摘This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality reduction algorithm of hyperspectral data based on dependence degree(DRNDDD) is proposed to reduce the redundant hyperspectral band. DRND-DD solves the selection of suitable hyperspectral band via rough set theory. Furthermore, to improve the computation speed and accuracy of the model, based on DRND-DD, this paper proposes reflectance estimation model mining of leaf nitrogen concentration(LNC) for hyperspectral data by using hybrid gene expression programming(REMLNC-HGEP). Experimental results on three datasets demonstrate that the DRND-DD algorithm can obtain good results with a very short running time compared with principal component analysis(PCA), singular value decomposition(SVD), a dimensionality reduction algorithm based on the positive region(AR-PR) and a dimensionality reduction algorithm based on a discernable matrix(ARDM), and REMLNC-HGEP has low average time-consumption, high model mining success ratio and estimation accuracy. It was concluded that the REMLNC-HGEP performs better than the regression methods.
文摘The shear stress distribution in circular channels was modeled in this study using gene expression programming(GEP). 173 sets of reliable data were collected under four flow conditions for use in the training and testing stages. The effect of input variables on GEP modeling was studied and 15 different GEP models with individual, binary, ternary, and quaternary input combinations were investigated. The sensitivity analysis results demonstrate that dimensionless parameter y/P, where y is the transverse coordinate, and P is the wetted perimeter, is the most influential parameter with regard to the shear stress distribution in circular channels. GEP model 10, with the parameter y/P and Reynolds number(Re) as inputs, outperformed the other GEP models, with a coefficient of determination of 0.7814 for the testing data set. An equation was derived from the best GEP model and its results were compared with an artificial neural network(ANN) model and an equation based on the Shannon entropy proposed by other researchers. The GEP model, with an average RMSE of 0.0301, exhibits superior performance over the Shannon entropy-based equation, with an average RMSE of 0.1049, and the ANN model, with an average RMSE of 0.2815 for all flow depths.
文摘Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring.Also,local scouring occurs around the submerged vanes over time,and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering.The most important aimof this study is investigation of scour pattern around submerged vanes located in 180°bend experimentally and numerically.Firstly,the effects of various parameters such as the Froude number(Fr),angle of submerged vanes to the flow(α),angle of submerged vane location in the bend(θ),distance between submerged vanes(d),height(H),and length(L)of the vanes on the dimensionless volume of the scour hole were experimentally studied.The submerged vanes were installed on a 180°bend whose central radius and channel width were 2.8 and 0.6 m,respectively.By reducing the Froude number,the scour hole volume decreased.For all Froude numbers,the biggest scour hole formed atθ=15°.In all models,by increasing the Froude number,the scour hole volume significantly increases.In addition,by increasing the submerged vanes’length and height,the scour hole dimensions also grow.Secondly,using gene expression programming(GEP),a relationship for determining the scour hole volume around the submerged vanes was provided.For this model,the determination coefficients(R2)for the training and test modes were computed as 0.91 and 0.9,respectively.In addition,this study performed partial derivative sensitivity analysis(PDSA).According to the results,the PDSA was calculated as positive for all input variables.
文摘The prediction of liquefaction-induced lateral spreading/displacement(Dh)is a challenging task for civil/geotechnical engineers.In this study,a new approach is proposed to predict Dh using gene expression programming(GEP).Based on statistical reasoning,individual models were developed for two topographies:free-face and gently sloping ground.Along with a comparison with conventional approaches for predicting the Dh,four additional regression-based soft computing models,i.e.Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimization regression(SMOR),and M5-tree,were developed and compared with the GEP model.The results indicate that the GEP models predict Dh with less bias,as evidenced by the root mean square error(RMSE)and mean absolute error(MAE)for training(i.e.1.092 and 0.815;and 0.643 and 0.526)and for testing(i.e.0.89 and 0.705;and 0.773 and 0.573)in free-face and gently sloping ground topographies,respectively.The overall performance for the free-face topology was ranked as follows:GEP>RVM>M5-tree>GPR>SMOR,with a total score of 40,32,24,15,and 10,respectively.For the gently sloping condition,the performance was ranked as follows:GEP>RVM>GPR>M5-tree>SMOR with a total score of 40,32,21,19,and 8,respectively.Finally,the results of the sensitivity analysis showed that for both free-face and gently sloping ground,the liquefiable layer thickness(T_(15))was the major parameter with percentage deterioration(%D)value of 99.15 and 90.72,respectively.