A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transfor...A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transformed into a corresponding fuzzy mathematical programming issue,for which a ranking function approach can be applied.In addition,optimal strategies of FBG for both Player I and Player II can be gotten.展开更多
触发执行编程(Trigger-Action Programming,TAP)为用户联动物联网(Internet of Things,IoT)设备提供了便捷的编程范式。利用机器学习对用户已编辑的TAP规则进行分析,实现TAP规则推荐和生成等功能可以提升用户体验。但TAP规则可能包含个...触发执行编程(Trigger-Action Programming,TAP)为用户联动物联网(Internet of Things,IoT)设备提供了便捷的编程范式。利用机器学习对用户已编辑的TAP规则进行分析,实现TAP规则推荐和生成等功能可以提升用户体验。但TAP规则可能包含个人隐私信息,用户对上传和分享TAP信息存在顾虑。文章提出了基于联邦学习和区块链技术的TAP规则处理系统,用户可在本地进行TAP模型训练,无需上传隐私数据。为解决集中式服务器单点故障和防范恶意模型参数上传的问题,文章利用区块链技术改进集中式TAP联邦学习架构。用户将本地模型更新的累积梯度传输给区块链中的矿工,进行异常识别和交叉验证。矿工委员会整合正常用户提供的累积梯度,得到的全局模型作为一个新区块的数据,链接到区块链上,供用户下载使用。文章采用轻量级无监督的非负矩阵分解方法验证了提出的基于联邦学习和区块链的分布式学习架构的有效性。实验证明该联邦学习架构能有效保护TAP数据中的隐私,并且区块链中的矿工能够很好地识别恶意模型参数,确保了模型的稳定性。展开更多
Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these adv...Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing.展开更多
The main goal of this paper is to study the following combinatorial problem : given a finite set E = (e1, e2, ...,em} and a subset family a - [S1,S2, ... ,Sk} of E , does there exist a tree T with the edge set E such ...The main goal of this paper is to study the following combinatorial problem : given a finite set E = (e1, e2, ...,em} and a subset family a - [S1,S2, ... ,Sk} of E , does there exist a tree T with the edge set E such that each induced subgraph T[Si] of Si is precisely a path (1≤i≤k) ?展开更多
This paper proposes an inner product Laplacian embedding algorithm based on semi-definite programming, named as IPLE algorithm. The new algorithm learns a geodesic distance-based kernel matrix by using semi-definite p...This paper proposes an inner product Laplacian embedding algorithm based on semi-definite programming, named as IPLE algorithm. The new algorithm learns a geodesic distance-based kernel matrix by using semi-definite programming under the constraints of local contraction. The criterion function is to make the neighborhood points on manifold as close as possible while the geodesic distances between those distant points are preserved. The IPLE algorithm sufficiently integrates the advantages of LE, ISOMAP and MVU algorithms. The comparison experiments on two image datasets from COIL-20 images and USPS handwritten digit images are performed by applying LE, ISOMAP, MVU and the proposed IPLE. Experimental results show that the intrinsic low-dimensional coordinates obtained by our algorithm preserve more information according to the fraction of the dominant eigenvalues and can obtain the better comprehensive performance in clustering and manifold structure.展开更多
Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related gen...Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of (F, α ,p ,d ,b , φ )β vector-pseudo- quasi-Type I and formulate a higher-order duality for minimax fractional type programming involving symmetric matrices, and give the weak, strong and strict converse duality theorems under the condition of higher-order (F, α ,p ,d ,b , φ )β vector-pseudoquasi-Type I.展开更多
In this paper we compute Karmarkar's projections quickly using MoorePenrose g-inverse and matrix factorization. So the computation work of (ATD2A)-1is decreased.
基金Sponsored by the National Natural Science Foundation of China(70471063,70771010)
文摘A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transformed into a corresponding fuzzy mathematical programming issue,for which a ranking function approach can be applied.In addition,optimal strategies of FBG for both Player I and Player II can be gotten.
文摘触发执行编程(Trigger-Action Programming,TAP)为用户联动物联网(Internet of Things,IoT)设备提供了便捷的编程范式。利用机器学习对用户已编辑的TAP规则进行分析,实现TAP规则推荐和生成等功能可以提升用户体验。但TAP规则可能包含个人隐私信息,用户对上传和分享TAP信息存在顾虑。文章提出了基于联邦学习和区块链技术的TAP规则处理系统,用户可在本地进行TAP模型训练,无需上传隐私数据。为解决集中式服务器单点故障和防范恶意模型参数上传的问题,文章利用区块链技术改进集中式TAP联邦学习架构。用户将本地模型更新的累积梯度传输给区块链中的矿工,进行异常识别和交叉验证。矿工委员会整合正常用户提供的累积梯度,得到的全局模型作为一个新区块的数据,链接到区块链上,供用户下载使用。文章采用轻量级无监督的非负矩阵分解方法验证了提出的基于联邦学习和区块链的分布式学习架构的有效性。实验证明该联邦学习架构能有效保护TAP数据中的隐私,并且区块链中的矿工能够很好地识别恶意模型参数,确保了模型的稳定性。
文摘Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing.
基金Supported by the National Natural Science Foundation of China
文摘The main goal of this paper is to study the following combinatorial problem : given a finite set E = (e1, e2, ...,em} and a subset family a - [S1,S2, ... ,Sk} of E , does there exist a tree T with the edge set E such that each induced subgraph T[Si] of Si is precisely a path (1≤i≤k) ?
文摘This paper proposes an inner product Laplacian embedding algorithm based on semi-definite programming, named as IPLE algorithm. The new algorithm learns a geodesic distance-based kernel matrix by using semi-definite programming under the constraints of local contraction. The criterion function is to make the neighborhood points on manifold as close as possible while the geodesic distances between those distant points are preserved. The IPLE algorithm sufficiently integrates the advantages of LE, ISOMAP and MVU algorithms. The comparison experiments on two image datasets from COIL-20 images and USPS handwritten digit images are performed by applying LE, ISOMAP, MVU and the proposed IPLE. Experimental results show that the intrinsic low-dimensional coordinates obtained by our algorithm preserve more information according to the fraction of the dominant eigenvalues and can obtain the better comprehensive performance in clustering and manifold structure.
文摘Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of (F, α ,p ,d ,b , φ )β vector-pseudo- quasi-Type I and formulate a higher-order duality for minimax fractional type programming involving symmetric matrices, and give the weak, strong and strict converse duality theorems under the condition of higher-order (F, α ,p ,d ,b , φ )β vector-pseudoquasi-Type I.
文摘In this paper we compute Karmarkar's projections quickly using MoorePenrose g-inverse and matrix factorization. So the computation work of (ATD2A)-1is decreased.