This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is define...This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by theMinkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowskioverlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternionbased orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures arobust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviourof a rockfill system under impact of a high speed projectile. The rockfill sample is generated by a three-dimensionalVoronoi meso method with a specific particle size distribution. The penetrating process of the projectile strikingthe rockfill target is simulated. Some physical quantities associated with the projectile such as the residual velocity,penetration resistance, and deflection angle are monitored which can reflect the influence of the characteristics ofthe rockfill target on its anti-penetration performance. It can be concluded that the developed polyhedral DEMmethod is a very promising numerical approach in analysing the dynamic behaviour of rockfill systems subject tohigh speed projectile impact.展开更多
Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging ...Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost.展开更多
In this study,an explicit dynamic constitutive model was established for ultra high toughness cementitious composites(UHTCCs).The model,based on the Holmquist–Johnson–Cook(HJC)model,includes tensile and compressive ...In this study,an explicit dynamic constitutive model was established for ultra high toughness cementitious composites(UHTCCs).The model,based on the Holmquist–Johnson–Cook(HJC)model,includes tensile and compressive damage evolution,hydrostatic pressure,strain rate,and the Lode angle effect.The proposed model was embedded in LS-DYNA software and then comprehensive tests were carried on a hexahedral brick element formulation under uniaxial,biaxial,and triaxial stress states to verify its rationality through comparisons with results determined by the HJC and Karagozian&Case(K&C)models.Finally,the proposed model was used to simulate the damage caused to UHTCC targets subjected to blast by embedded explosive and projectile penetration,and predictions were compared with corresponding experimental results.The results of the numerical simulations showed that our proposed model was more accurate than the HJC model in predicting the size of the crater,penetration depth,and the distribution of cracks inside the target following the blast or high-speed impact loading.展开更多
基金This work is partially supported by National Natural Science Foundation of China under Grant No.12072217by Open Fund of State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing,China[Grant No.SKLCRSM19KFA12].The support is gratefully acknowledged.
文摘This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by theMinkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowskioverlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternionbased orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures arobust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviourof a rockfill system under impact of a high speed projectile. The rockfill sample is generated by a three-dimensionalVoronoi meso method with a specific particle size distribution. The penetrating process of the projectile strikingthe rockfill target is simulated. Some physical quantities associated with the projectile such as the residual velocity,penetration resistance, and deflection angle are monitored which can reflect the influence of the characteristics ofthe rockfill target on its anti-penetration performance. It can be concluded that the developed polyhedral DEMmethod is a very promising numerical approach in analysing the dynamic behaviour of rockfill systems subject tohigh speed projectile impact.
基金the Agency for Defense Development,Republic of Korea[grant number UD170110GD].
文摘Recently,reactive materials have been developed for penetrative projectiles to improve impact resistance and energy capacity.However,the design of a reactive material structure,involving shape and size,is challenging because of difficulties such as high non-linearity of impact resistance,manufacturing limitations of reactive materials and high expenses of penetration experiments.In this study,a design optimization methodology for the reactive material structure is developed based on the finite element analysis.A finite element model for penetration analysis is introduced to save the expenses of the experiments.Impact resistance is assessed through the analysis,and result is calibrated by comparing with experimental results.Based on the model,topology optimization is introduced to determine shape of the structure.The design variables and constraints of the optimization are proposed considering the manufacturing limitations,and the optimal shape that can be manufactured by cold spraying is determined.Based on the optimal shape,size optimization is introduced to determine the geometric dimensions of the structure.As a result,optimal design of the reactive material structure and steel case of the penetrative projectile,which maximizes the impact resistance,is determined.Using the design process proposed in this study,reactive material structures can be designed considering not only mechanical performances but also manufacturing limitations,with reasonable time and cost.
基金Project supported by the National Natural Science Foundation of China(Nos.51678522 , 51878601)。
文摘In this study,an explicit dynamic constitutive model was established for ultra high toughness cementitious composites(UHTCCs).The model,based on the Holmquist–Johnson–Cook(HJC)model,includes tensile and compressive damage evolution,hydrostatic pressure,strain rate,and the Lode angle effect.The proposed model was embedded in LS-DYNA software and then comprehensive tests were carried on a hexahedral brick element formulation under uniaxial,biaxial,and triaxial stress states to verify its rationality through comparisons with results determined by the HJC and Karagozian&Case(K&C)models.Finally,the proposed model was used to simulate the damage caused to UHTCC targets subjected to blast by embedded explosive and projectile penetration,and predictions were compared with corresponding experimental results.The results of the numerical simulations showed that our proposed model was more accurate than the HJC model in predicting the size of the crater,penetration depth,and the distribution of cracks inside the target following the blast or high-speed impact loading.