First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setti...First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.展开更多
In this paper, optimal estimation for discrete-time linear time-varying systems with randomly state and measurement delays is considered. By introducing a set of binary random variables, the system is converted into t...In this paper, optimal estimation for discrete-time linear time-varying systems with randomly state and measurement delays is considered. By introducing a set of binary random variables, the system is converted into the one with both multiplicative noises and constant delays. Then, an estimator which includes the cases of smoothing and filter- ing, is derived via the projection formula, and the solution is given in terms of a partial difference Riccati equation with boundary conditions. A predictor for such systems is also presented based on the proposed filter and smoother. The ob- tained estimators have the same dimension as the original state. Conditions for existence, uniqueness, and stability of the steady-state optimal estimators are studied for time-invariant cases. In this case, the obtained estimators are very easy to implement and all calculations can be performed off line, leading to a linear time-invariant estimator.展开更多
文摘First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2011FQ020)the National Natural Science Foundation for Distinguished YoungScholars of China (No. 60825304)the National Natural Science Foundation of China (Nos. 61104050, 61074021)
文摘In this paper, optimal estimation for discrete-time linear time-varying systems with randomly state and measurement delays is considered. By introducing a set of binary random variables, the system is converted into the one with both multiplicative noises and constant delays. Then, an estimator which includes the cases of smoothing and filter- ing, is derived via the projection formula, and the solution is given in terms of a partial difference Riccati equation with boundary conditions. A predictor for such systems is also presented based on the proposed filter and smoother. The ob- tained estimators have the same dimension as the original state. Conditions for existence, uniqueness, and stability of the steady-state optimal estimators are studied for time-invariant cases. In this case, the obtained estimators are very easy to implement and all calculations can be performed off line, leading to a linear time-invariant estimator.