Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun...Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a primary contributor to cancer-related mortality on a global scale.However,the underlying molecular mechanisms are still poorly understood.Long noncoding RNAs are emerging m...BACKGROUND Hepatocellular carcinoma(HCC)is a primary contributor to cancer-related mortality on a global scale.However,the underlying molecular mechanisms are still poorly understood.Long noncoding RNAs are emerging markers for HCC diagnosis,prognosis,and therapeutic target.No study of LINC01767 in HCC was published.AIM To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time.METHODS DESeq2 Package was used to analyze different gene expressions.Receiver operating characteristic curves assessed the diagnostic performance.Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis.The least absolute shrinkage and selection operator(LASSO)-Cox was used to identify the prediction model.Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction,next generation sequencing was performed following LINC01767 over expression(GSE243371),and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out.In vitro experiment in Huh7 cell was carried out.RESULTS LINC01767 was down-regulated in HCC with a log fold change=1.575 and was positively correlated with the cancer stemness.LINC01767 was a good diagnostic marker with area under the curve(AUC)[0.801,95% confidence interval(CI):0.751-0.852,P=0.0106]and an independent predictor for overall survival(OS)with hazard ratio=1.899(95%CI:1.01-3.58,P=0.048).LINC01767 nomogram model showed a satisfied performance.The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways.LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC>0.75.LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line;the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro.CONCLUSION LINC01767 was an important tumor suppressor gene in HCC with good diagnostic and prognostic performance.展开更多
BACKGROUND The function of prohibitin 1(Phb1)during liver regeneration(LR)remains relatively unexplored.Our previous research identified downregulation of Phb1 in rat liver mitochondria 24 h after 70%partial hepatecto...BACKGROUND The function of prohibitin 1(Phb1)during liver regeneration(LR)remains relatively unexplored.Our previous research identified downregulation of Phb1 in rat liver mitochondria 24 h after 70%partial hepatectomy(PHx),as determined by subcellular proteomic analysis.AIM To investigate the potential role of Phb1 during LR.METHODS We examined changes in Phb1 mRNA and protein levels,subcellular distribution,and abundance in rat liver during LR following 70%PHx.We also evaluated mitochondrial changes and apoptosis using electron microscopy and flow cytometry.RNA-interference-mediated knockdown of Phb1(PHBi)was performed in BRL-3A cells.RESULTS Compared with sham-operation control groups,Phb1 mRNA and protein levels in 70%PHx test groups were downregulated at 24 h,then upregulated at 72 and 168 h.Phb1 was mainly located in mitochondria,showed a reduced abundance at 24 h,significantly increased at 72 h,and almost recovered to normal at 168 h.Phb1 was also present in nuclei,with continuous increase in abundance observed 72 and 168 h after 70%PHx.The altered ultrastructure and reduced mass of mitochondria during LR had almost completely recovered to normal at 168 h.PHBi in BRL-3A cells resulted in increased S-phase entry,a higher number of apoptotic cells,and disruption of mitochondrial membrane potential.CONCLUSION Phb1 may contribute to maintaining mitochondrial stability and could play a role in regulating cell proliferation and apoptosis of rat liver cells during LR.展开更多
Objective:Based on bioinformatics,gene set enrichment analysis(GSEA)and immune infiltration analysis were carried out on the microarray data of psoriasis expression profile to further understand the pathogenesis of ps...Objective:Based on bioinformatics,gene set enrichment analysis(GSEA)and immune infiltration analysis were carried out on the microarray data of psoriasis expression profile to further understand the pathogenesis of psoriasis.Methods:GSE6710 chip data were obtained from gene expression database(GEO),and gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis were performed using GSEA software.22 kinds of immune cell gene expression matrices and R packages were downloaded from CIBERSOFT official website,and the immune cell infiltration matrix was obtained by R software and related graphs were drawn.Results:The pathways related to cell proliferation and innate immunity were highly expressed in psoriatic lesions,and some cancer-related pathways were highly expressed in psoriatic lesions.Immunized cell infiltration analysis showed that activated memory T cells,follicular helper T cells,M0 macrophages and activated dendritic cells were up-regulated in psoriatic skin lesion group,and inactive mast cells were down-regulated in psoriatic skin lesion group.Activated dendritic cells are positively correlated with follicular helper T cells,activated mast cells are positively correlated with M0 macrophages.Inactivated mast cells are negatively correlated with activated memory T cells,M1 macrophages are negatively correlated with regulatory T cells,M0 macrophages are negatively correlated with inactive mast cells.Conclusion:Cell proliferation and innate immunity are of great significance in the pathogenesis of psoriasis.Immune cell infiltration analysis is generally consistent with the current psoriasis pathogenesis model.Macrophages and mast cells also play a certain role in psoriasis.展开更多
Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied,the gene expression changes in the facial nerve trunk after injury are still unknown.In this study,we...Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied,the gene expression changes in the facial nerve trunk after injury are still unknown.In this study,we established an adult rat model of facial nerve crush injury by compressing the right lateral extracranial nerve trunk.Transcriptome sequencing,differential gene expression analysis,and cluster analysis of the injured facial nerve trunk were performed,and 39 intersecting genes with significant variance in expression were identified.Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 39 intersecting genes revealed that these genes are mostly involved in leukocyte cell-cell adhesion and phagocytosis and have essential roles in regulating nerve repair.Quantitative real-time polymerase chain reaction assays were used to validate the expression of pivotal genes.Finally,nine pivotal genes that contribute to facial nerve recovery were identified,including Arhgap30,Akr1b8,C5ar1,Csf2ra,Dock2,Hcls1,Inpp5d,Sla,and Spi1.Primary Schwann cells were isolated from the sciatic nerve of neonatal rats.After knocking down Akr1b8 in Schwann cells with an Akr1b8-specific small interfering RNA plasmid,expression levels of monocyte chemoattractant protein-1 and interleukin-6 were decreased,while cell proliferation and migration were not obviously altered.These findings suggest that Akr1b8 likely regulates the interaction between Schwann cells and macrophages through regulation of cytokine expression to promote facial nerve regeneration.This study is the first to reveal a transcriptome change in the facial nerve trunk after facial nerve injury,thereby revealing the potential mechanism underlying repair of facial nerve injury.This study was approved by the Animal Ethics Committee of Nantong University,China in 2018(approval No.S20180923-007).展开更多
The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis.The single-cell RNA sequencing(scRNA-seq)analysis of the testis was performed to identify genes upr...The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis.The single-cell RNA sequencing(scRNA-seq)analysis of the testis was performed to identify genes upregulated in spermatogonia.Using scRNAseq analysis,we identified the spermatogonia upregulated gene origin recognition complex subunit 6(Orc6),which is involved in DNA replication and cell cycle regulation;its protein expression in the human and mouse testis was detected by western blot and immunofluorescence.To explore the potential function of Orc6 in spermatogonia,the C18-4 cell line was transfected with control or Orc6 siRNA.Subsequently,5-ethynyl-2-deoxyuridine(EdU)and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)assays,flow cytometry,and western blot were used to evaluate its effects on proliferation and apoptosis.It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells.Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated(Wnt)/β-catenin signaling.Western blot revealed that the expression ofβ-catenin protein and its phosphorylation(Ser675)were significantly decreased when silencing the expression of ORC6.Our findings indicated that Orc6 was upregulated in spermatogonia,whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.展开更多
BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To in...BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research.展开更多
Objective:To estimate electroporation(EP) influence on malignant and normal cells.Methods: Two cell lines including human malignant melanoma(Me-43) and normal human gingival fibroblast(HCFs) were used.EP parameters we...Objective:To estimate electroporation(EP) influence on malignant and normal cells.Methods: Two cell lines including human malignant melanoma(Me-43) and normal human gingival fibroblast(HCFs) were used.EP parameters were the following:230,1000,1 730,2 300 V/cm;30 μ s by 3 impulses for every case.The viability of cells after EP was estimated by MTT assay. The ullrastructural analysis was observed by transmission electron microscope(Zeiss EM 900). Results:In the current study we observed the intracellular effect following EP on Me-43 and HGF cells.At the conditions applied,we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP.Conversely,we showed that EP in some conditions can stimulate cells to proliferation.Some changes induced by EP were only visible in electron microscopy.In fibroblast cells we observed significant changes in lower parameters of EP(230 and 1 000 V/cm).After applying higher electric field intensities(2 300 V/cm) we detected many vacuoles,myelin-like bodies and swallowed endoplasmic reticulum.In melanoma cells such strong pathological modifications after EP were not observed,in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP.Conclusions:We can claim that EP conditions are cell line dependent.In terms of the intracellular morphology,human fibroblasts are more sensitive to electric field as compared with melanoma cells.Optimal conditions should be determined for each cell line.Summarizing our study,we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.展开更多
The formation of new and functional cardiomyocytes requires a 3-step process:dedifferentiation,proliferation,and redifferentiation,but the critical genes required for efficient dedifferentiation,proliferation,and redi...The formation of new and functional cardiomyocytes requires a 3-step process:dedifferentiation,proliferation,and redifferentiation,but the critical genes required for efficient dedifferentiation,proliferation,and redifferentiation remain unknown.In our study,a circular trajectory using single-nucleus RNA sequencing of the pericentriolar material 1 positive(PCM1^(+))cardiomyocyte nuclei from hearts 1 and 3 days after surgery-induced myocardial infarction(MI)on postnatal Day 1 was reconstructed and demonstrated that actin remodeling contributed to the dedifferentiation,proliferation,and redifferentiation of cardiomyocytes after injury.We identified four top actin-remodeling regulators,namely Tmsb4x,Tmsb10,Dmd,and Ctnna3,which we collectively referred to as 2D2P.Transiently expressed changes of 2D2P,using a polycistronic non-integrating lentivirus driven by Tnnt2(cardiac-specific troponin T)promoters(Tnnt2-2D2P-NIL),efficiently induced transiently proliferative activation and actin remodeling in postnatal Day 7 cardiomyocytes and adult hearts.Furthermore,the intramyocardial delivery of Tnnt2-2D2P-NIL resulted in a sustained improvement in cardiac function without ventricular dilatation,thickened septum,or fatal arrhythmia for at least 4 months.In conclusion,this study highlights the importance of actin remodeling in cardiac regeneration and provides a foundation for new gene-cocktail-therapy approaches to improve cardiac repair and treat heart failure using a novel transient and cardiomyocyte-specific viral construct.展开更多
基金supported by the National Natural Science Foundation of China,Nos.31730031,32130060the National Natural Science Foundation of China,No.31971276(to JH)+1 种基金the Natural Science Foundation of Jiangsu Province,No.BK20202013(to XG)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Major Program),No.19KJA320005(to JH)。
文摘Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
基金Supported by Foundation of Qingdao Postdoctoral Innovation Project,No.QDBSH20230101019Funded State Key Laboratory of Marine Food Processing&Safety Control,Qingdao,No.SKL2023M05.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a primary contributor to cancer-related mortality on a global scale.However,the underlying molecular mechanisms are still poorly understood.Long noncoding RNAs are emerging markers for HCC diagnosis,prognosis,and therapeutic target.No study of LINC01767 in HCC was published.AIM To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time.METHODS DESeq2 Package was used to analyze different gene expressions.Receiver operating characteristic curves assessed the diagnostic performance.Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis.The least absolute shrinkage and selection operator(LASSO)-Cox was used to identify the prediction model.Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction,next generation sequencing was performed following LINC01767 over expression(GSE243371),and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out.In vitro experiment in Huh7 cell was carried out.RESULTS LINC01767 was down-regulated in HCC with a log fold change=1.575 and was positively correlated with the cancer stemness.LINC01767 was a good diagnostic marker with area under the curve(AUC)[0.801,95% confidence interval(CI):0.751-0.852,P=0.0106]and an independent predictor for overall survival(OS)with hazard ratio=1.899(95%CI:1.01-3.58,P=0.048).LINC01767 nomogram model showed a satisfied performance.The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways.LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC>0.75.LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line;the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro.CONCLUSION LINC01767 was an important tumor suppressor gene in HCC with good diagnostic and prognostic performance.
文摘BACKGROUND The function of prohibitin 1(Phb1)during liver regeneration(LR)remains relatively unexplored.Our previous research identified downregulation of Phb1 in rat liver mitochondria 24 h after 70%partial hepatectomy(PHx),as determined by subcellular proteomic analysis.AIM To investigate the potential role of Phb1 during LR.METHODS We examined changes in Phb1 mRNA and protein levels,subcellular distribution,and abundance in rat liver during LR following 70%PHx.We also evaluated mitochondrial changes and apoptosis using electron microscopy and flow cytometry.RNA-interference-mediated knockdown of Phb1(PHBi)was performed in BRL-3A cells.RESULTS Compared with sham-operation control groups,Phb1 mRNA and protein levels in 70%PHx test groups were downregulated at 24 h,then upregulated at 72 and 168 h.Phb1 was mainly located in mitochondria,showed a reduced abundance at 24 h,significantly increased at 72 h,and almost recovered to normal at 168 h.Phb1 was also present in nuclei,with continuous increase in abundance observed 72 and 168 h after 70%PHx.The altered ultrastructure and reduced mass of mitochondria during LR had almost completely recovered to normal at 168 h.PHBi in BRL-3A cells resulted in increased S-phase entry,a higher number of apoptotic cells,and disruption of mitochondrial membrane potential.CONCLUSION Phb1 may contribute to maintaining mitochondrial stability and could play a role in regulating cell proliferation and apoptosis of rat liver cells during LR.
基金Beijing Key Laboratory of Clinical Basic Research on Psoriasis of Traditional Chinese Medicine(No.BZ0375-KF201602)。
文摘Objective:Based on bioinformatics,gene set enrichment analysis(GSEA)and immune infiltration analysis were carried out on the microarray data of psoriasis expression profile to further understand the pathogenesis of psoriasis.Methods:GSE6710 chip data were obtained from gene expression database(GEO),and gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis were performed using GSEA software.22 kinds of immune cell gene expression matrices and R packages were downloaded from CIBERSOFT official website,and the immune cell infiltration matrix was obtained by R software and related graphs were drawn.Results:The pathways related to cell proliferation and innate immunity were highly expressed in psoriatic lesions,and some cancer-related pathways were highly expressed in psoriatic lesions.Immunized cell infiltration analysis showed that activated memory T cells,follicular helper T cells,M0 macrophages and activated dendritic cells were up-regulated in psoriatic skin lesion group,and inactive mast cells were down-regulated in psoriatic skin lesion group.Activated dendritic cells are positively correlated with follicular helper T cells,activated mast cells are positively correlated with M0 macrophages.Inactivated mast cells are negatively correlated with activated memory T cells,M1 macrophages are negatively correlated with regulatory T cells,M0 macrophages are negatively correlated with inactive mast cells.Conclusion:Cell proliferation and innate immunity are of great significance in the pathogenesis of psoriasis.Immune cell infiltration analysis is generally consistent with the current psoriasis pathogenesis model.Macrophages and mast cells also play a certain role in psoriasis.
文摘Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied,the gene expression changes in the facial nerve trunk after injury are still unknown.In this study,we established an adult rat model of facial nerve crush injury by compressing the right lateral extracranial nerve trunk.Transcriptome sequencing,differential gene expression analysis,and cluster analysis of the injured facial nerve trunk were performed,and 39 intersecting genes with significant variance in expression were identified.Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 39 intersecting genes revealed that these genes are mostly involved in leukocyte cell-cell adhesion and phagocytosis and have essential roles in regulating nerve repair.Quantitative real-time polymerase chain reaction assays were used to validate the expression of pivotal genes.Finally,nine pivotal genes that contribute to facial nerve recovery were identified,including Arhgap30,Akr1b8,C5ar1,Csf2ra,Dock2,Hcls1,Inpp5d,Sla,and Spi1.Primary Schwann cells were isolated from the sciatic nerve of neonatal rats.After knocking down Akr1b8 in Schwann cells with an Akr1b8-specific small interfering RNA plasmid,expression levels of monocyte chemoattractant protein-1 and interleukin-6 were decreased,while cell proliferation and migration were not obviously altered.These findings suggest that Akr1b8 likely regulates the interaction between Schwann cells and macrophages through regulation of cytokine expression to promote facial nerve regeneration.This study is the first to reveal a transcriptome change in the facial nerve trunk after facial nerve injury,thereby revealing the potential mechanism underlying repair of facial nerve injury.This study was approved by the Animal Ethics Committee of Nantong University,China in 2018(approval No.S20180923-007).
基金This work was supported by the National Key Research and Development Program of China(No.2022YFC2702700)the National Natural Science Foundation of China(No.82171597)Clinical Research Plan of Shanghai Hospital Development Center(No.SHDC2020CR3077B).
文摘The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis.The single-cell RNA sequencing(scRNA-seq)analysis of the testis was performed to identify genes upregulated in spermatogonia.Using scRNAseq analysis,we identified the spermatogonia upregulated gene origin recognition complex subunit 6(Orc6),which is involved in DNA replication and cell cycle regulation;its protein expression in the human and mouse testis was detected by western blot and immunofluorescence.To explore the potential function of Orc6 in spermatogonia,the C18-4 cell line was transfected with control or Orc6 siRNA.Subsequently,5-ethynyl-2-deoxyuridine(EdU)and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)assays,flow cytometry,and western blot were used to evaluate its effects on proliferation and apoptosis.It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells.Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated(Wnt)/β-catenin signaling.Western blot revealed that the expression ofβ-catenin protein and its phosphorylation(Ser675)were significantly decreased when silencing the expression of ORC6.Our findings indicated that Orc6 was upregulated in spermatogonia,whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.
基金Supported by Ningxia Science and Technology Benefiting People Program,No.2022CMG03064National Natural Science Foundation of China,No.82260879Ningxia Natural Science Foundation,No.2022AAC03144 and 2022AAC02039.
文摘BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research.
基金Suppoted by statutory funds of Medical Wroelaw University andresearch Tellowship within"Development Program of Wroclaw Medical University"funded from European Social Fund.Human CapitalNational Cohesion Strategy(Contract No.UDA-POKL.04.01.01-00-010/08-00)
文摘Objective:To estimate electroporation(EP) influence on malignant and normal cells.Methods: Two cell lines including human malignant melanoma(Me-43) and normal human gingival fibroblast(HCFs) were used.EP parameters were the following:230,1000,1 730,2 300 V/cm;30 μ s by 3 impulses for every case.The viability of cells after EP was estimated by MTT assay. The ullrastructural analysis was observed by transmission electron microscope(Zeiss EM 900). Results:In the current study we observed the intracellular effect following EP on Me-43 and HGF cells.At the conditions applied,we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP.Conversely,we showed that EP in some conditions can stimulate cells to proliferation.Some changes induced by EP were only visible in electron microscopy.In fibroblast cells we observed significant changes in lower parameters of EP(230 and 1 000 V/cm).After applying higher electric field intensities(2 300 V/cm) we detected many vacuoles,myelin-like bodies and swallowed endoplasmic reticulum.In melanoma cells such strong pathological modifications after EP were not observed,in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP.Conclusions:We can claim that EP conditions are cell line dependent.In terms of the intracellular morphology,human fibroblasts are more sensitive to electric field as compared with melanoma cells.Optimal conditions should be determined for each cell line.Summarizing our study,we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.
基金supported by the grant to Chunyu Zeng from the National Key R&D Program of China(2022YFA1104500)the National Natural Science Foundation of China(82200307)the grant to Chunyu Zeng from the National Natural Science Foundation of China(81930008).
文摘The formation of new and functional cardiomyocytes requires a 3-step process:dedifferentiation,proliferation,and redifferentiation,but the critical genes required for efficient dedifferentiation,proliferation,and redifferentiation remain unknown.In our study,a circular trajectory using single-nucleus RNA sequencing of the pericentriolar material 1 positive(PCM1^(+))cardiomyocyte nuclei from hearts 1 and 3 days after surgery-induced myocardial infarction(MI)on postnatal Day 1 was reconstructed and demonstrated that actin remodeling contributed to the dedifferentiation,proliferation,and redifferentiation of cardiomyocytes after injury.We identified four top actin-remodeling regulators,namely Tmsb4x,Tmsb10,Dmd,and Ctnna3,which we collectively referred to as 2D2P.Transiently expressed changes of 2D2P,using a polycistronic non-integrating lentivirus driven by Tnnt2(cardiac-specific troponin T)promoters(Tnnt2-2D2P-NIL),efficiently induced transiently proliferative activation and actin remodeling in postnatal Day 7 cardiomyocytes and adult hearts.Furthermore,the intramyocardial delivery of Tnnt2-2D2P-NIL resulted in a sustained improvement in cardiac function without ventricular dilatation,thickened septum,or fatal arrhythmia for at least 4 months.In conclusion,this study highlights the importance of actin remodeling in cardiac regeneration and provides a foundation for new gene-cocktail-therapy approaches to improve cardiac repair and treat heart failure using a novel transient and cardiomyocyte-specific viral construct.