Describes a new computer program (Regress-3D) to simulate the regression of complex 3D grain cavity and calculate the burning surface area. It has a large region of applicability in solid rocket motor design and has...Describes a new computer program (Regress-3D) to simulate the regression of complex 3D grain cavity and calculate the burning surface area. It has a large region of applicability in solid rocket motor design and has made new improvements compared with other available codes. User can easily and rapidly build his initial grain shapes and then obtain geometric information of his design. Considering with the calclulting results, redesigning can be performed as desire until reaching at the satisfied result. Advantages and disadvantages of this method are also discussed.展开更多
To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the di...To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the discrete element method. On the basis of the appropriate constitutive relationships, the discrete element model of the propellant grain was established. Compared with experimental measurements, the micro-parameters of the bonded-particle model of the propellant grain under unconfined uniaxial compression tests were calibrated. The propellant grains without initial defects, with initial surface defects, and with initial internal defects were studied numerically through a series of unconfined uniaxial compression tests. Results show that the established discrete element model is an efficient tool to study the press and fracture processes of the propellant grain. The fracture process of the propellant grain without initial defects can be divided into the elastic deformation phase, crack initiation phase, crack stable propagation phase, and crack unstable propagation phase. The fracture mechanism of this grain is the global shear failure along the direction of the maximum shear stress. Initial defects have significant effects on both the fracture mechanism and peak strength of the propellant grain. The major fracture mechanism of the propellant grain with initial surface defects is local shear failure, whereas that of the propellant grain with initial internal defects is global tensile failure. Both defects weaken the peak strengths of the propellant grain. Therefore, the carrying and filling process of the propellant grain needs to minimize initial defects as far as possible.展开更多
A method is presented here for structural optimization of elliptical-tip star grain.The grain structural integrity was improved by minimizing the most critical area of inner bore hoop strain during cool down.Optimizat...A method is presented here for structural optimization of elliptical-tip star grain.The grain structural integrity was improved by minimizing the most critical area of inner bore hoop strain during cool down.Optimization was done by sub-problem approximation method in conjunction with finite element analysis.Both radii of the ellipse were varied during optimization to find the optimal ellipse.The optimization resulted in grain geometry having minimum level of Inner bore hoop strain without violating the preset limits of burning perimeter.The von mises strain at grain inner bore was also reduced in resultant grain.展开更多
文摘Describes a new computer program (Regress-3D) to simulate the regression of complex 3D grain cavity and calculate the burning surface area. It has a large region of applicability in solid rocket motor design and has made new improvements compared with other available codes. User can easily and rapidly build his initial grain shapes and then obtain geometric information of his design. Considering with the calclulting results, redesigning can be performed as desire until reaching at the satisfied result. Advantages and disadvantages of this method are also discussed.
基金The National Key Research and Development Program of China(No.2018YFD1100401-04)the National Natural Science Foundation of China(No.11772091)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CE01-2)the Open Research Fund Program of Jiangsu Key Laboratory of Engineering M echanics(No.LEM16A08)
文摘To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the discrete element method. On the basis of the appropriate constitutive relationships, the discrete element model of the propellant grain was established. Compared with experimental measurements, the micro-parameters of the bonded-particle model of the propellant grain under unconfined uniaxial compression tests were calibrated. The propellant grains without initial defects, with initial surface defects, and with initial internal defects were studied numerically through a series of unconfined uniaxial compression tests. Results show that the established discrete element model is an efficient tool to study the press and fracture processes of the propellant grain. The fracture process of the propellant grain without initial defects can be divided into the elastic deformation phase, crack initiation phase, crack stable propagation phase, and crack unstable propagation phase. The fracture mechanism of this grain is the global shear failure along the direction of the maximum shear stress. Initial defects have significant effects on both the fracture mechanism and peak strength of the propellant grain. The major fracture mechanism of the propellant grain with initial surface defects is local shear failure, whereas that of the propellant grain with initial internal defects is global tensile failure. Both defects weaken the peak strengths of the propellant grain. Therefore, the carrying and filling process of the propellant grain needs to minimize initial defects as far as possible.
文摘A method is presented here for structural optimization of elliptical-tip star grain.The grain structural integrity was improved by minimizing the most critical area of inner bore hoop strain during cool down.Optimization was done by sub-problem approximation method in conjunction with finite element analysis.Both radii of the ellipse were varied during optimization to find the optimal ellipse.The optimization resulted in grain geometry having minimum level of Inner bore hoop strain without violating the preset limits of burning perimeter.The von mises strain at grain inner bore was also reduced in resultant grain.