Commercial spherical activated carbon(SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for ...Commercial spherical activated carbon(SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for SAC with nitrogen were compared by changing the SAC-Melamine ratios. The effect of carbonization temperature on the modification was also investigated. Surface chemistry and adsorption properties of the modified and unmodified SACs were studied by scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), elementary analysis, BET, and temperature-programmed desorption(TPD). Moreover, the catalytic properties of SAC in acetylene hydrochlorination under differently modified conditions were also investigated. Elemental analysis showed that the nitrogen content of the modified SAC was greatly improved. XPS revealed that nitrogen mainly exists in Pyrrole nitrogen and Pyridine nitrogen. TPD showed that desorption of C2H2 was changed by modification. The conversion rate of acetylene was up to 70% under the following reaction conditions: temperature, 150 ℃; C2H2 hourly space velocity(GHSV), 36 h-1; feed volume ratio V(HCl)/V(C2H2) = 1.15. The catalytic properties of SAC were improved significantly via melamine modification.展开更多
Fibrous brucite,a kind of brucite with unique structure and physical properties,was modified with stearic acid as a surface modifier.In order to investigate the mechanism of surface modification,the fixation of steari...Fibrous brucite,a kind of brucite with unique structure and physical properties,was modified with stearic acid as a surface modifier.In order to investigate the mechanism of surface modification,the fixation of stearic acid on fibrous brucite and the induced changes in surface properties were studied by using X-ray diffraction(XRD),scanning electron microscopy(SEM),infrared spectroscopy(IR),Raman spectroscopy and thermo-gravimetric analysis(TGA).XRD analysis indicates that the modification of fibrous brucite with stearic acid does not cause any changes in the structure of fibrous brucite mineral.Spectroscopy and thermal analysis show that the surfactant molecules are not only directly adsorbed on the surface of the mineral,but also chemisorbed on mineral surface by forming chemical bonds between the modifier and magnesium hydroxide.展开更多
Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)...Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)(EL-10) emulsifying vegetable waxes. The water retention property was studied in simulated desertification climate, and the materials were analyzed and characterized by UV-Vis, SEM, FTIR and XRD measurements. Moreover, a UV carbon arc lamp was used to test the resistance to aging. The experimental results show that the emulsion has good dispersity. Both the water retention property and the aging resistance performance of the modified clay were excellent. The lamellar structure and chemical composition of MMT had no obvious changes before and after modification. The surfaces of clay particles were coated uniformly with modified MMT, so the loose clay particles were cemented together by vegetable waxes. Meanwhile, the original big hydrophilic pores between the clay particles turned into capillary hydrophobic pores. So the clay particles formed a bonding layer which could inhibit water evaporation. Grass-planting experiment showed that reasonable mass ratio of vegetable waxes and EL-10 was 1:18. The materials not only had great water retention property but also maintained sound air permeability so that the germination rate of grass seed significantly increased from 8% to 52%.展开更多
Diesel engines, characterized by higher breakout pressure and compression ratio in comparison with gasoline engines, require particularly elevated tensile properties for their engine parts. In order to maintain both h...Diesel engines, characterized by higher breakout pressure and compression ratio in comparison with gasoline engines, require particularly elevated tensile properties for their engine parts. In order to maintain both high strength and high ductility in the cylinder head, i.e., to obtain higher percent elongation without further reducing the tensile strength, Al Si9Cu1 alloy was used to prepare the cylinder head in an aluminum diesel engine. At the same time, the effect of different modification elements, Na or Sr, and Fe content on the reduction of secondary dendrite arm spacing(SDAS) was discussed, and the design of T7 heat treatment parameters were analyzed in order to improve the tensile ductility. The result shows:(1) The SDAS is as small as 18±3 μm for the Sr modified alloy.(2) The percent elongation of the alloy with Sr modification increases by 66.7% and 42.9%, respectively, compared with the unmodified alloy and the alloy with Na modification.(3) Lower Fe content alloy(0.10%) gives good results in percent elongation compared to the alloy with higher Fe content(0.27%); in particular, after Sr modification and T7 heat treatment, the elongation of over 5% is obtained.展开更多
The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagne...The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the <sup>17</sup>O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO<sub>2</sub>, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.展开更多
Based on a study of the relationship of ammonium nitrate (AN) explosion and its thermal stability, inert agents were added to AN for eliminating the explosive characteristic of AN and in order to be irrestorable. Th...Based on a study of the relationship of ammonium nitrate (AN) explosion and its thermal stability, inert agents were added to AN for eliminating the explosive characteristic of AN and in order to be irrestorable. The results of using a large quantity of experiments and various testing technologies show that the improvement on thermal stability of modified AN is the basic reason for eliminating explosive characteristic of AN. The modification scheme was considered to have the following features: reliable and stable technology, market-demanded product, low investment and good economic returns. And during the revamping period, the normal production of AN will not be af- fected, and the economic, social and environmental benefits are good.展开更多
Siloxane rubber shows attractive properties of high stability,elasticity and transparency.Besides,the regulation of its properties renders it widely used in many application fields.However,most of the reported perform...Siloxane rubber shows attractive properties of high stability,elasticity and transparency.Besides,the regulation of its properties renders it widely used in many application fields.However,most of the reported performance improvement methods of siloxane rubber focus on the change of chemical composition of siloxane rubber,including the design of molecular chain and the introduction of other compounds,etc.Such a strategy is still faced with many limitations in practical application.In this work,on the premise of not changing the chemical composition of siloxane rubber,we propose a facile solvothermal polymerization process to change the structure of cross-linking networks,so as to obtain the siloxane rubber with controllable mechanical properties.Compared to the normal curing method,we realized polydimethylsiloxane elastomer(PDMS)with maximum elongation of more than 3,000%(>10 times of normally cured one)and tensile modulus lower than 0.15 MPa(<1/10 of normally cured one).In addition to superior stretchability,it gains extra high softness,stickiness and sensitive response to organic solvents.Based on our solvothermal cured PDMS,its applications in oil collection and organic solvent sensor have been demonstrated.It is expected that this method can be readily utilized widely and shows great application potentials.展开更多
A calcium sulfate whisker (CSW) coated with glutaraldehyde crosslinked chitosan (GACS) was prepared to reinforce polyvinyl chloride (PVC) in this study. The results show that the optimum concentration of both ch...A calcium sulfate whisker (CSW) coated with glutaraldehyde crosslinked chitosan (GACS) was prepared to reinforce polyvinyl chloride (PVC) in this study. The results show that the optimum concentration of both chitosan (CS) and glutaraldehyde (GA) is 0.05 wt%. The tensile strength, impact strength, flexural modulus and vicat softening temperature of the PVC composite with 12 wt% of modified CSW are in- creased by 1 Z5%, 40.4%, 0.8% and 3.8% compared with those of the PVC composite with 12 wt~ of unmodified CSW, and by 2.9%, 42.4%, 2Z1% and 6.8% compared with those of pure PVC, respectively. The dynamic mechanical analysis results indicate that the modified CSW/PVC composite exhibits much higher storage modulus and glass transition temperature than those of unmodified CSW/PVC composite and pure PVC. In addition, the modified CSW/PVC composite also demonstrates good thermal properties with a high rapidest decomposition temperature (Trvd) and char residue. The scanning electron microscopy images of tensile-fractured surfaces show that the modified CSW has a strong interfacial adhesion with PVC matrix.展开更多
Effects of mischmetal(RE) and/or Ti modifier on the microstructure including α-Al dendrites, eutectic Si phases and other secondary phases of Al-Si brazing and/or welding alloys were investigated by differential sc...Effects of mischmetal(RE) and/or Ti modifier on the microstructure including α-Al dendrites, eutectic Si phases and other secondary phases of Al-Si brazing and/or welding alloys were investigated by differential scanning calorimetry(DSC), optical microscopy(OM), scanning electron microscopy(SEM). The DSC results showed that an addition of RE decreased the eutectic temperature and caused supercooling, promoting the nucleation of eutectic Si crystals. In addition, the maximum temperature of the first endothermic peak varied with the different RE contents, which had a good correlation with the microstructural modification of the eutectic Si phase. The α-Al dendrites were well refined by increasing the cooling rate or adding 0.08 wt.% of Ti. When 0.05 wt.% RE was added to the Al-5Si-0.08 Ti alloy, the morphology of eutectic Si phase was transformed from coarse platelet to fine fibers and the mechanical properties of the resulting welding rod were well improved. Whereas, when excess RE was added, a large number of β-Fe phases appeared and the aspect ratios of β-Fe phases increased. The morphologies and chemical components of two kinds of RE-containing intermetallic compounds(IMCs) were also discussed.展开更多
A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is ...A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is higher than that of SiO2 modified by traditional wet chemical route (I-SiO2, only 10 wt%). The results of transmission electron microscopy have demonstrated that in-situ surface modified g-SiO2 particles dispersed well with smaller agglomerates in the final coating, which was much better than the particles modified via wet chemical route. Visible light transmittance and haze tests were introduced to characterize the optical quality of the films. All coatings were highly transparent with the visible light transmittance of above 80%, especially for coatings containing g-SiO2, which exhibited slightly higher visible light transmittance than l-SiO2 embedded one. The haze value of coatings incorporated with 15 wt% g-SiO2 was 1.85%, even lower than the coating with 5 wt% I-SiO2 (haze value of 2.09%), indicating much better clarity of g-SiO2. The excellent optical property of g-SiO2 filled coatings was attributed to the good dispersion and distribution of particles. Nano-indention and nano-scratch tests were con- ducted to investigate the scratch resistance of coatings on nano-scale. The surface hardness of the coatings rose by 18% and 14%, and the average friction coefficient decreased by 15% and 11%, respectively, compared to the neat coat due to the addition of 10 wt% g-SiO2 and I-SiO2. The pencil hardness of the coating with 15 wt% g-SiO2 increased from 2B for the neat coating to 2H. However, the pencil hardness of coating with 10 wt% I-SiO2 was only H. The results showed that the g-SiO2 embedded coatings exhibited higher scratch resistance and better optical properties.展开更多
基金Funded by the National Basic Research Program of China(973 Program,2012CB720302)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1161)the Corps Science and Technology Innovation Team Scheme(2011CC001)
文摘Commercial spherical activated carbon(SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for SAC with nitrogen were compared by changing the SAC-Melamine ratios. The effect of carbonization temperature on the modification was also investigated. Surface chemistry and adsorption properties of the modified and unmodified SACs were studied by scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), elementary analysis, BET, and temperature-programmed desorption(TPD). Moreover, the catalytic properties of SAC in acetylene hydrochlorination under differently modified conditions were also investigated. Elemental analysis showed that the nitrogen content of the modified SAC was greatly improved. XPS revealed that nitrogen mainly exists in Pyrrole nitrogen and Pyridine nitrogen. TPD showed that desorption of C2H2 was changed by modification. The conversion rate of acetylene was up to 70% under the following reaction conditions: temperature, 150 ℃; C2H2 hourly space velocity(GHSV), 36 h-1; feed volume ratio V(HCl)/V(C2H2) = 1.15. The catalytic properties of SAC were improved significantly via melamine modification.
基金Funded by National Natural Science Foundation of China(No.51274015)
文摘Fibrous brucite,a kind of brucite with unique structure and physical properties,was modified with stearic acid as a surface modifier.In order to investigate the mechanism of surface modification,the fixation of stearic acid on fibrous brucite and the induced changes in surface properties were studied by using X-ray diffraction(XRD),scanning electron microscopy(SEM),infrared spectroscopy(IR),Raman spectroscopy and thermo-gravimetric analysis(TGA).XRD analysis indicates that the modification of fibrous brucite with stearic acid does not cause any changes in the structure of fibrous brucite mineral.Spectroscopy and thermal analysis show that the surfactant molecules are not only directly adsorbed on the surface of the mineral,but also chemisorbed on mineral surface by forming chemical bonds between the modifier and magnesium hydroxide.
基金Funded by the National High-tech Research and Development Program of China(863 Program)(No.2001AA322100)the National Natural Science Foundation of China(No.50772131)+1 种基金the Main Project of Ministry of Education of China(No.106086)the Fundamental Research Funds for the Central Universities of China University of Mining and Technology(Beijing)(No.2012YJ05)
文摘Aiming at the problem of available water conservation in desertification ecological restoration, we prepared the water retention materials with montmorillonite(MMT) modified by Castor Oil Polyoxyethylene Ether(10)(EL-10) emulsifying vegetable waxes. The water retention property was studied in simulated desertification climate, and the materials were analyzed and characterized by UV-Vis, SEM, FTIR and XRD measurements. Moreover, a UV carbon arc lamp was used to test the resistance to aging. The experimental results show that the emulsion has good dispersity. Both the water retention property and the aging resistance performance of the modified clay were excellent. The lamellar structure and chemical composition of MMT had no obvious changes before and after modification. The surfaces of clay particles were coated uniformly with modified MMT, so the loose clay particles were cemented together by vegetable waxes. Meanwhile, the original big hydrophilic pores between the clay particles turned into capillary hydrophobic pores. So the clay particles formed a bonding layer which could inhibit water evaporation. Grass-planting experiment showed that reasonable mass ratio of vegetable waxes and EL-10 was 1:18. The materials not only had great water retention property but also maintained sound air permeability so that the germination rate of grass seed significantly increased from 8% to 52%.
基金supported by the major project of Shandong Science and Technology(No.2015ZDZX03004)the project of Shandong Science and Technology Development Plan(No.2014GGX103035)the National“Thousand Talents Plan”of China
文摘Diesel engines, characterized by higher breakout pressure and compression ratio in comparison with gasoline engines, require particularly elevated tensile properties for their engine parts. In order to maintain both high strength and high ductility in the cylinder head, i.e., to obtain higher percent elongation without further reducing the tensile strength, Al Si9Cu1 alloy was used to prepare the cylinder head in an aluminum diesel engine. At the same time, the effect of different modification elements, Na or Sr, and Fe content on the reduction of secondary dendrite arm spacing(SDAS) was discussed, and the design of T7 heat treatment parameters were analyzed in order to improve the tensile ductility. The result shows:(1) The SDAS is as small as 18±3 μm for the Sr modified alloy.(2) The percent elongation of the alloy with Sr modification increases by 66.7% and 42.9%, respectively, compared with the unmodified alloy and the alloy with Na modification.(3) Lower Fe content alloy(0.10%) gives good results in percent elongation compared to the alloy with higher Fe content(0.27%); in particular, after Sr modification and T7 heat treatment, the elongation of over 5% is obtained.
文摘The paper presents a flow plasma reactor permitting modification of the properties of water/aqueous solutions by stochastic resonance amplification of vibrations of selected chemical species in water with electromagnetic noise generated during a plasma discharge. The main parameters characterizing the quality for super-pure water, tap water and water from the intake in Besko (Poland) before and after the process in the plasma reactor were presented for comparison. In addition, the <sup>17</sup>O NMR (the full width at half maximum) and electrospray ionization mass spectrometry (ESI MS) methods were used to determine differences in physicochemical parameters between the untreated and plasma-treated water. It has been established that the water subjected to plasma treatment shows much different gas absorption properties than the untreated water samples, as a function of temperature and pressure, in this paper we report exemplary data for CO<sub>2</sub>, oxygen and acetylene. The improved gas absorption properties of the plasma-treated water make it attractive for the use in industrial processes. It is worth pointing to a great capacity of the new reactor (4000 l/h), and low energy consumption (20 MJ/h) for the treatment of the above mentioned volume flow rate of water.
基金Project supported by the National Natural Science Foundation of China (No. 50174008).
文摘Based on a study of the relationship of ammonium nitrate (AN) explosion and its thermal stability, inert agents were added to AN for eliminating the explosive characteristic of AN and in order to be irrestorable. The results of using a large quantity of experiments and various testing technologies show that the improvement on thermal stability of modified AN is the basic reason for eliminating explosive characteristic of AN. The modification scheme was considered to have the following features: reliable and stable technology, market-demanded product, low investment and good economic returns. And during the revamping period, the normal production of AN will not be af- fected, and the economic, social and environmental benefits are good.
基金This work was supported by the National Natural Science Foundation of China(Nos.51732011,21431006,21761132008,81788101,and 11227901)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.21521001)+4 种基金Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH036)the National Basic Research Program of China(No.2014CB931800)the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS(No.2015HSC-UE007)the Fundamental Research Funds for the Central Universities(Nos.WK5290000001,WK2060000034,and WK6030000127)This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication。
文摘Siloxane rubber shows attractive properties of high stability,elasticity and transparency.Besides,the regulation of its properties renders it widely used in many application fields.However,most of the reported performance improvement methods of siloxane rubber focus on the change of chemical composition of siloxane rubber,including the design of molecular chain and the introduction of other compounds,etc.Such a strategy is still faced with many limitations in practical application.In this work,on the premise of not changing the chemical composition of siloxane rubber,we propose a facile solvothermal polymerization process to change the structure of cross-linking networks,so as to obtain the siloxane rubber with controllable mechanical properties.Compared to the normal curing method,we realized polydimethylsiloxane elastomer(PDMS)with maximum elongation of more than 3,000%(>10 times of normally cured one)and tensile modulus lower than 0.15 MPa(<1/10 of normally cured one).In addition to superior stretchability,it gains extra high softness,stickiness and sensitive response to organic solvents.Based on our solvothermal cured PDMS,its applications in oil collection and organic solvent sensor have been demonstrated.It is expected that this method can be readily utilized widely and shows great application potentials.
基金supported by the National Natural Science Foundation of China (No. U 1507123)the Foundation from Qinghai Science and Technology Department (No. 2014-HZ-817)
文摘A calcium sulfate whisker (CSW) coated with glutaraldehyde crosslinked chitosan (GACS) was prepared to reinforce polyvinyl chloride (PVC) in this study. The results show that the optimum concentration of both chitosan (CS) and glutaraldehyde (GA) is 0.05 wt%. The tensile strength, impact strength, flexural modulus and vicat softening temperature of the PVC composite with 12 wt% of modified CSW are in- creased by 1 Z5%, 40.4%, 0.8% and 3.8% compared with those of the PVC composite with 12 wt~ of unmodified CSW, and by 2.9%, 42.4%, 2Z1% and 6.8% compared with those of pure PVC, respectively. The dynamic mechanical analysis results indicate that the modified CSW/PVC composite exhibits much higher storage modulus and glass transition temperature than those of unmodified CSW/PVC composite and pure PVC. In addition, the modified CSW/PVC composite also demonstrates good thermal properties with a high rapidest decomposition temperature (Trvd) and char residue. The scanning electron microscopy images of tensile-fractured surfaces show that the modified CSW has a strong interfacial adhesion with PVC matrix.
基金Project supported by National Natural Science Foundation of China(51375233)Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina Postdoctoral Science Foundation(2014M550289,2015T80548)
文摘Effects of mischmetal(RE) and/or Ti modifier on the microstructure including α-Al dendrites, eutectic Si phases and other secondary phases of Al-Si brazing and/or welding alloys were investigated by differential scanning calorimetry(DSC), optical microscopy(OM), scanning electron microscopy(SEM). The DSC results showed that an addition of RE decreased the eutectic temperature and caused supercooling, promoting the nucleation of eutectic Si crystals. In addition, the maximum temperature of the first endothermic peak varied with the different RE contents, which had a good correlation with the microstructural modification of the eutectic Si phase. The α-Al dendrites were well refined by increasing the cooling rate or adding 0.08 wt.% of Ti. When 0.05 wt.% RE was added to the Al-5Si-0.08 Ti alloy, the morphology of eutectic Si phase was transformed from coarse platelet to fine fibers and the mechanical properties of the resulting welding rod were well improved. Whereas, when excess RE was added, a large number of β-Fe phases appeared and the aspect ratios of β-Fe phases increased. The morphologies and chemical components of two kinds of RE-containing intermetallic compounds(IMCs) were also discussed.
基金supported by the National Natural Science Foundation of China (Nos. 51173043, 21236003, and 21322607)the Basic Research Program of Shanghai (Nos. 13JC1408100 and 15JC1401300)+1 种基金the Key Scientific and Technological Program of Shanghai (No. 14521100800)the Fundamental Research Funds for the Central Universities.
文摘A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is higher than that of SiO2 modified by traditional wet chemical route (I-SiO2, only 10 wt%). The results of transmission electron microscopy have demonstrated that in-situ surface modified g-SiO2 particles dispersed well with smaller agglomerates in the final coating, which was much better than the particles modified via wet chemical route. Visible light transmittance and haze tests were introduced to characterize the optical quality of the films. All coatings were highly transparent with the visible light transmittance of above 80%, especially for coatings containing g-SiO2, which exhibited slightly higher visible light transmittance than l-SiO2 embedded one. The haze value of coatings incorporated with 15 wt% g-SiO2 was 1.85%, even lower than the coating with 5 wt% I-SiO2 (haze value of 2.09%), indicating much better clarity of g-SiO2. The excellent optical property of g-SiO2 filled coatings was attributed to the good dispersion and distribution of particles. Nano-indention and nano-scratch tests were con- ducted to investigate the scratch resistance of coatings on nano-scale. The surface hardness of the coatings rose by 18% and 14%, and the average friction coefficient decreased by 15% and 11%, respectively, compared to the neat coat due to the addition of 10 wt% g-SiO2 and I-SiO2. The pencil hardness of the coating with 15 wt% g-SiO2 increased from 2B for the neat coating to 2H. However, the pencil hardness of coating with 10 wt% I-SiO2 was only H. The results showed that the g-SiO2 embedded coatings exhibited higher scratch resistance and better optical properties.