期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Purification and Some Properties of Endo-1,4-β-Glucanases of Trichoderma harzianum UzCF-28
1
作者 N. Sh. Azimova D. M. Khamidov +1 位作者 M. B. Djumagulov Z. S. Shakirov 《Open Journal of Applied Sciences》 2016年第8期514-523,共11页
This work aimed at isolation, purification and study of biochemical features of cellulolytic enzymes synthesized by Trichoderma harzianum UzCF-28 strain. Strain UzCF-28 revealed a high cellulolytic activity during sub... This work aimed at isolation, purification and study of biochemical features of cellulolytic enzymes synthesized by Trichoderma harzianum UzCF-28 strain. Strain UzCF-28 revealed a high cellulolytic activity during submerged cultivation in the liquid culture on modified Mandels nutrient medium, where wheat straw was used as a source of carbon. As a result of purification by precipitation with ammonium sulfate and further ion exchange chromatography, two isoforms of endo- 1,4-β-glucanase-EG II and EG III with molecular weight of 135 and 75 kDa respectively were revealed. The pH optimum for EG I and EG III was 4.5, while for EG II—4.7, irrespective of the applied substrates—either CMC or “Whatman filter” paper. Heating up to 40°C of EG III did not lead to its inactivation, and on the contrary, its activity increased by more than three times comparing to the initial activity of the enzyme, i.e. thermostability of EG III among tested enzymes significantly varied. 展开更多
关键词 Trichoderma harzianum ENZYME endo-1 4-β-glucanase PURIFICATION
下载PDF
Cloning of Endo-β-Glucanase Ⅲ and Expression in Eerevisiae Fermentum 被引量:1
2
作者 国震宇 王丕武 +3 位作者 曲靖 付永平 姚丹 付玉芹 《Agricultural Science & Technology》 CAS 2009年第6期47-49,52,共4页
Objective The aim was to construct bioengineering strains that could degrade the cellulosic solid waste. Method The cDNA of endo-β-glucanase III of Trichoderma vi ride AS313711 was cloned by RT-PCR method. After sequ... Objective The aim was to construct bioengineering strains that could degrade the cellulosic solid waste. Method The cDNA of endo-β-glucanase III of Trichoderma vi ride AS313711 was cloned by RT-PCR method. After sequenced, this gene was constructed to expression vector pESP-2, and then the plasmid was transformed into competent cell of cerevisiae fermentum by electric shock, the transformant was then obtained. The enzyme activity of this transformant at the different temperatures and pH was measured by DNS method. Result The length of ORF of EG III was 1 257 bp, encoding 418 amino acids, while the deduced molecular weight was 44.1 × 103 kD. Conclusion The enzyme activity of EG III was the highest when it was at PH 4.9 and tempeture was of 60℃. Then the corresponding enzyme activity was about 100%. 展开更多
关键词 Trichoderma viride endo-β-glucanase III Escherichia coil CONVERSION Enzyme activity
下载PDF
Cloning and Expression of Extremely Heat-Resistant Endo-β-1,4-Glucanase Gene from Thermotoga maritima in Bacillus subtilis
3
作者 HAO Yarong CHEN Ting ZHANG Xingqun 《Journal of Donghua University(English Edition)》 EI CAS 2019年第5期479-482,共4页
Gene encoding endo-β-1,4-glucanase(TM1525)is derived from Thermotoga maritima(T.maritima),which has an open reading frame of 825 bp and encodes a 274 amino acid endo-β-1,4-glucanase.This enzyme has the same high tem... Gene encoding endo-β-1,4-glucanase(TM1525)is derived from Thermotoga maritima(T.maritima),which has an open reading frame of 825 bp and encodes a 274 amino acid endo-β-1,4-glucanase.This enzyme has the same high temperature resistance as thermophilic bacteria,which is an ideal property for industrial applications.By molecular biological means,TM1525 was cloned into pHT43 vector and introduced into Bacillus subtilis(B.subtilis)WB800N by electroporation.The results showed that the WB800N expression system was successfully constructed,and extracellular expression of the recombinant gene was achieved.Cellulose hydrolyzed activity of the protein was exhibited. 展开更多
关键词 endo-β-1 4-glucanase pHT43 BACILLUS SUBTILIS WB800N THERMOTOGA maritima
下载PDF
Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination 被引量:6
4
作者 Qiang ZHANG Qi-he CHEN Ming-liang FU Jin-ling WANG Hong-bo ZHANG Guo-qing HE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第7期527-535,共9页
The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtil& was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeas... The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtil& was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone a-factor (MFals), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-1,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-1,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-1,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer. 展开更多
关键词 endo-1 3-1 4-β-glucanase (bglS) Gene replacement Homologous recombination Bacillus subtilis PEP4 gene Saccharomyces cerevisiae
下载PDF
Xyloglucans of Monocotyledons Have Diverse Structures 被引量:5
5
作者 Yves S.Y. Hsieh Philip J. Harris 《Molecular Plant》 SCIE CAS CSCD 2009年第5期943-965,共23页
Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were is... Except in the Poaceae, little is known about the structures of the xyloglucans in the primary walls of monocotyledons. Xyloglucan structures in a range of monocotyledon species were examined. Wall preparations were isolated, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analyzed by high-performance anion-exchange chromatography and by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Oligosaccharide profiles of the non-commelinid monocotyledons were similar to those of most eudicotyledons, indicating the xyloglucans were fucogalactoxyloglucans, with a XXXG a core motif and the fucosylated units XXFG and XLFG. An exception was Lemna minor (Araceae), which yielded no fucosylated oligosaccharides and had both XXXG and XXGn core motifs. Except for the Arecales (palms) and the Dasypogonaceae, which had fucogalactoxyloglucans, the xyloglucans of the commelinid monocotyledons were structurally different. The Zingiberales and Commelinales had xyloglucans with both XXGn and XXXG core motifs; small proportions of XXFG units, but no XLFG units, were present. In the Poales, the Poaceae had xyloglucans with a XXGn core motif and no fucosylated units. In the other Poales families, some had both XXXG and XXGn core motifs, others had only XXXG; XXFG units were present, but XLFG units were not. 展开更多
关键词 Commelinid monocotyledons non-commelinid monocotyledons plant cell walls POACEAE xyloglucans xyloglucan-specific endo-(1→4)-β-glucanase.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部