On December 18, 1979, the 34th General Assembly of the United Nations adopted the Convention on the Elimination of All Forms of Discrimination against Women with an overwhelming majority of the votes in its favor. Ove...On December 18, 1979, the 34th General Assembly of the United Nations adopted the Convention on the Elimination of All Forms of Discrimination against Women with an overwhelming majority of the votes in its favor. Over the past 30 years, the Convention has come to be known by increasing numbers of governments and people, particularly women's organizations. It has played an increasingly great role in protecting women's rights and enhancing women's status in society.展开更多
The regulation of the National Significant Seismic Monitoring and Protection Regions(NSSMPR for short) is defined by the Law of the Peoples Republic of China on Protecting Against and Mitigating Earthquake Disasters.T...The regulation of the National Significant Seismic Monitoring and Protection Regions(NSSMPR for short) is defined by the Law of the Peoples Republic of China on Protecting Against and Mitigating Earthquake Disasters.The first stage of implementation of the regulation of NSSMPR in the Chinese mainland was finished from 1996 to 2005.The second stage is being carried on from 2006 to 2020.With the support of the National Social Science Foundation,this paper follows up and evaluates the implementation of the regulation of NSSMPR from 1996 to 2012 in the Chinese mainland.Based on analysis of earthquake examples and investigation data,we find that the effect of disaster mitigation is good,and on this basis,some suggestions are proposed to improve the regulation of NSSMPR.展开更多
Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam...Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.展开更多
Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding roc...Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.展开更多
This paper proposes an unequal error protection(UEP)coding method to improve the transmission performance of three-dimensional(3D)audio based on expanding window fountain(EWF).Different from other transmissions ...This paper proposes an unequal error protection(UEP)coding method to improve the transmission performance of three-dimensional(3D)audio based on expanding window fountain(EWF).Different from other transmissions with equal error protection(EEP)when transmitting the 3D audio objects.An approach of extracting the important audio object is presented,and more protection is given to more important audio object and comparatively less protection is given to the normal audio objects.Objective and subjective experiments have shown that the proposed UEP method achieves better performance than equal error protection method,while the bits error rates(BER)of the important audio object can decrease from 10^(–3) to 10^(–4),and the subjective quality of UEP is better than that of EEP by 14%.展开更多
文摘On December 18, 1979, the 34th General Assembly of the United Nations adopted the Convention on the Elimination of All Forms of Discrimination against Women with an overwhelming majority of the votes in its favor. Over the past 30 years, the Convention has come to be known by increasing numbers of governments and people, particularly women's organizations. It has played an increasingly great role in protecting women's rights and enhancing women's status in society.
基金sponsored by the National Social Science Foundation of China"Research on the Status,Efficiencies and the Policy on the National Significant Seismic Monitoring and Protection Regions"(11&ZD054)
文摘The regulation of the National Significant Seismic Monitoring and Protection Regions(NSSMPR for short) is defined by the Law of the Peoples Republic of China on Protecting Against and Mitigating Earthquake Disasters.The first stage of implementation of the regulation of NSSMPR in the Chinese mainland was finished from 1996 to 2005.The second stage is being carried on from 2006 to 2020.With the support of the National Social Science Foundation,this paper follows up and evaluates the implementation of the regulation of NSSMPR from 1996 to 2012 in the Chinese mainland.Based on analysis of earthquake examples and investigation data,we find that the effect of disaster mitigation is good,and on this basis,some suggestions are proposed to improve the regulation of NSSMPR.
基金supported by the Qing Lan Project Foundation of Jiangsu Province in 2014,Foundation for Distinguished professor of Jiangsu Province in 2015,Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51421003)Project funded by China Postdoctoral Science Foundation(2016M601915)National Key Basic Research Program of China(No.2013CB227905)
文摘Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.
基金This paper was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions(No.20KJB440002)the National Natural Science Foundation of China(Project Nos.51804129,51808246 and 51904112)+5 种基金China Postdoctoral Science Foundation(No.2020M671301)the Postdoctoral Science Foundation of Jiangsu Province(Nos.2019K139 and 2019Z107)the Huai’an Science and Technology Plan project(No.HAB201836)the Industry Education Research Cooperation Projects in Jiangsu Province(No.BY2020007)Undergraduate Innovation and Entrepreneurship Training Program(No.202011049111XJ)the Foundation of Huaiyin Institute of Technology(No.Z301B20530).
文摘Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2015AA016306)the National Natural Science Foundation of China(61662010,61231015,61471271)+1 种基金Science and Technology Plan Projects of Shenzhen(ZDSYS2014050916575763)Science and Technology Foundation of Guizhou Province(LKS[2011]1)
文摘This paper proposes an unequal error protection(UEP)coding method to improve the transmission performance of three-dimensional(3D)audio based on expanding window fountain(EWF).Different from other transmissions with equal error protection(EEP)when transmitting the 3D audio objects.An approach of extracting the important audio object is presented,and more protection is given to more important audio object and comparatively less protection is given to the normal audio objects.Objective and subjective experiments have shown that the proposed UEP method achieves better performance than equal error protection method,while the bits error rates(BER)of the important audio object can decrease from 10^(–3) to 10^(–4),and the subjective quality of UEP is better than that of EEP by 14%.