Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein ...Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.展开更多
BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have em...BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types.We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes.AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6.METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs.Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites.RESULTS In this study we investigated the interaction between PRMT1 and PRMT6,and PRMT6 was shown to be a novel substrate of PRMT1.We identified specific arginine residues of PRMT6 that are methylated by PRMT1,with R106 being the major methylation site.Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation.CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1.PRMT1 methylation suppresses the activity of PRMT6.展开更多
目的探讨蛋白质精氨酸甲基转移酶6(PRMT6)调控前列腺癌发生的分子机制。方法通过免疫组织化学、Western blot、Real Time PCR、转染、克隆实验、流式细胞技术和Transwell实验研究PRMT6对前列腺癌细胞增殖、细胞周期及迁移的影响。结果...目的探讨蛋白质精氨酸甲基转移酶6(PRMT6)调控前列腺癌发生的分子机制。方法通过免疫组织化学、Western blot、Real Time PCR、转染、克隆实验、流式细胞技术和Transwell实验研究PRMT6对前列腺癌细胞增殖、细胞周期及迁移的影响。结果研究发现,PRMT6在前列腺癌组织及前列腺癌细胞系中呈高表达状态,PRMT6表达改变与促癌基因PSA和KLK2成正相关,证实PRMT6通过调控AR下游靶基因促进前列腺癌发生。此外,PRMT6促进前列腺癌细胞22Rv1和LNCaP的细胞周期进程,促进细胞增殖及迁移。结论 PRMT6通过调控AR下游靶基因促进前列腺癌细胞的增殖及迁移,从而促进前列腺癌的发生发展。展开更多
The timing of floral transition is critical for reproductive success in flowering plants.In long-day(LD)plant Arabidopsis,the floral regulator gene FLOWERING LOCUS T(FT)is a major component of the mobile florigen.FT e...The timing of floral transition is critical for reproductive success in flowering plants.In long-day(LD)plant Arabidopsis,the floral regulator gene FLOWERING LOCUS T(FT)is a major component of the mobile florigen.FT expression is rhythmically activated by CONSTANS(CO),and specifically accumu-lated at dusk of LDs.However;the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated.Here,we identify a homolog of human protein arginine methyltransferases 6(HsPRMT6)in Arabidopsis,and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3(NF-YC3),NF-YC9,and NF-YB3.Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs.PRMT6-mediated H3 R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals.Moreover,AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C,a suppressor of FT.Taken together,our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82001178(to LW),81901129(to LH),82001175(to FX)Shanghai Sailing Program,No.20YF1439200(to LW)+1 种基金the Natural Science Foundation of Shanghai,China,No.23ZR1450800(to LH)and the Fundamental Research Funds for the Central Universities,No.YG2023LC15(to ZX)。
文摘Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.
基金Supported by National Institutes of Health,No.5R01GM126154 and No.1R35GM149230。
文摘BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types.We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes.AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6.METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs.Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites.RESULTS In this study we investigated the interaction between PRMT1 and PRMT6,and PRMT6 was shown to be a novel substrate of PRMT1.We identified specific arginine residues of PRMT6 that are methylated by PRMT1,with R106 being the major methylation site.Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation.CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1.PRMT1 methylation suppresses the activity of PRMT6.
文摘目的探讨蛋白质精氨酸甲基转移酶6(PRMT6)调控前列腺癌发生的分子机制。方法通过免疫组织化学、Western blot、Real Time PCR、转染、克隆实验、流式细胞技术和Transwell实验研究PRMT6对前列腺癌细胞增殖、细胞周期及迁移的影响。结果研究发现,PRMT6在前列腺癌组织及前列腺癌细胞系中呈高表达状态,PRMT6表达改变与促癌基因PSA和KLK2成正相关,证实PRMT6通过调控AR下游靶基因促进前列腺癌发生。此外,PRMT6促进前列腺癌细胞22Rv1和LNCaP的细胞周期进程,促进细胞增殖及迁移。结论 PRMT6通过调控AR下游靶基因促进前列腺癌细胞的增殖及迁移,从而促进前列腺癌的发生发展。
基金the Natural National Science Foundation of China(32101786)the National Transgenic Major Program(2019ZX08010-002)+1 种基金the Fu ndamental Research Funds for Central Non-profit Scientific Institution(1610392017001)the Baichuan Project at the College of Life Science and Technology,Huazhong Agricultural University.
文摘The timing of floral transition is critical for reproductive success in flowering plants.In long-day(LD)plant Arabidopsis,the floral regulator gene FLOWERING LOCUS T(FT)is a major component of the mobile florigen.FT expression is rhythmically activated by CONSTANS(CO),and specifically accumu-lated at dusk of LDs.However;the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated.Here,we identify a homolog of human protein arginine methyltransferases 6(HsPRMT6)in Arabidopsis,and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3(NF-YC3),NF-YC9,and NF-YB3.Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs.PRMT6-mediated H3 R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals.Moreover,AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C,a suppressor of FT.Taken together,our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.