In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an ...In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.展开更多
Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells...Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formationis a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and b HLH transcriptional factors.Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.展开更多
Forster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro andin vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occur...Forster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro andin vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occurs between oscillating dipoles of two fluorophores with overlapping emission and excitation wavelengths and is dependent on the spectroscopic and geometric properties of the donor-acceptor pair. Various efforts have been made to develop quantitative FRET methods to accurately determine the interaction affinity and kinetics parameters. SUMOylation is an important post-translational protein modification with key roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENP) act as endopeptidases to process the pre-SUMO or an isopeptidase to deconjugate SUMO from its substrate. Here we also summarize recent developments of theoretical and experimental procedures for determining the protein interaction dissociation constant, Kd, and protease kinetics parameters, kcat and Kin, in the SUMOylation pathway. The general principles of these quantitative FRET-based measurements can be applied to other protein interactions and proteases.展开更多
Machine intelligence,is out of the system by the artificial intelligence shown.It is usually achieved by the average computer intelligence.Rough sets and Information Granules in uncertainty management and soft computi...Machine intelligence,is out of the system by the artificial intelligence shown.It is usually achieved by the average computer intelligence.Rough sets and Information Granules in uncertainty management and soft computing and granular computing is widely used in many fields,such as in protein sequence analysis and biobasis determination,TSM and Web service classification Etc.展开更多
Can we determine a high resolution protein structure quickly, say, in a week? I will show this is possible by the current technologies together with new computational tools discussed in this article. We have three po...Can we determine a high resolution protein structure quickly, say, in a week? I will show this is possible by the current technologies together with new computational tools discussed in this article. We have three potential paths to explore: X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle.NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average.In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as “predicted”, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. I investigate the question of “quick protein structure determination” from a computer scientist point of view and actually answer the more relevant question “what can a computer scientist effectively contribute to this goal”.展开更多
文摘In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.
基金supported by National Natural Science Foundation of China (Grant Nos. 31370215, 31228002 and 31970167)International Scientific and Technological Cooperation Project of Science and Technology Department of Zhejiang Province (Grant No. 2013C24007)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No. Z3110004)Ph.D.Programs Foundation of Ministry of Education of China (Grant No. 20120101110079)
文摘Cell fate determination is a basic developmental process during the growth of multicellular organisms.Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formationis a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and b HLH transcriptional factors.Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.
文摘Forster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro andin vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occurs between oscillating dipoles of two fluorophores with overlapping emission and excitation wavelengths and is dependent on the spectroscopic and geometric properties of the donor-acceptor pair. Various efforts have been made to develop quantitative FRET methods to accurately determine the interaction affinity and kinetics parameters. SUMOylation is an important post-translational protein modification with key roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENP) act as endopeptidases to process the pre-SUMO or an isopeptidase to deconjugate SUMO from its substrate. Here we also summarize recent developments of theoretical and experimental procedures for determining the protein interaction dissociation constant, Kd, and protease kinetics parameters, kcat and Kin, in the SUMOylation pathway. The general principles of these quantitative FRET-based measurements can be applied to other protein interactions and proteases.
文摘Machine intelligence,is out of the system by the artificial intelligence shown.It is usually achieved by the average computer intelligence.Rough sets and Information Granules in uncertainty management and soft computing and granular computing is widely used in many fields,such as in protein sequence analysis and biobasis determination,TSM and Web service classification Etc.
基金supported by the National High Tech Research and Development 863 Program under Grant No.2008AA02Z313 from China’s Ministry of Science and TechnologyCanada’s NSERC under Grant No. OGP0046506Canada Research Chair Program,an NSERC Collaborative Grant,Ontario’s Premier’s Discovery Award
文摘Can we determine a high resolution protein structure quickly, say, in a week? I will show this is possible by the current technologies together with new computational tools discussed in this article. We have three potential paths to explore: X-ray crystallography. While this method has produced the most protein structures in the PDB (Protein Data Bank), the nasty trial-and-error crystallization step remains to be an inhibitive obstacle.NMR (Nuclear Magnetic Resonance) spectroscopy. While the NMR experiments are relatively easy to do, the interpretation of the NMR data for structure calculation takes several months on average.In silico protein structure prediction. Can we actually predict high resolution structures consistently? If the predicted models remain to be labeled as “predicted”, and these structures still need to be experimentally verified by the wet lab methods, then this method at best can serve only as a screening tool. I investigate the question of “quick protein structure determination” from a computer scientist point of view and actually answer the more relevant question “what can a computer scientist effectively contribute to this goal”.