BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord ...The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. Howe...Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.展开更多
Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current st...Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current study aimed to explore the function and potential mechanism of TOP2A in GBC.Methods:Based on Gene Expression Profiling Interactive Analysis data,we found TOP2A was significantly up-regulated in GBC tissues and resulting in shorter overall survival.Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expression of TOP2A in 45 pairs of GBC tissues and adjacent non-tumor tissues.In vitro,cell proliferation,migration,and invasion ability were examined by cell counting kit-8 and transwell assay,respectively.Epithelial-mesenchymal transition(EMT)related and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway-related markers were measured by Western blotting.Xenograft model assay was performed to evaluate the effect of TOP2A in vivo.Results:TOP2A was found up-regulated in GBC(tumor vs.normal,12.62 vs.0.34)and correlated with the late tumor node metastasis stage(P=0.0032),present of lymph node metastasis(P=0.0273),and poor prognosis in GBC patients(log-rank P=0.028).In vitro and in vivo assays showed that knockdown of TOP2A notably inhibited cell proliferation,migration,invasion,EMT process,and tumor growth in GBC.In addition,TOP2A down-regulation significantly decreased the protein levels of phosphor(p)-PI3K,p-Akt,and p-mTOR.Conclusion:Our study demonstrates that TOP2A was overexpressed in GBC and associated with poor prognosis in GBC patients.TOP2A promotes GBC cell proliferation,migration,invasion,EMT process,and tumor growth through activating PI3K/Akt/mTOR signaling pathway,and may serve as a novel prognostic biomarker and therapeutic target for GBC.展开更多
Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit l...Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α(PI3K/AKT/mTOR/HIF-1α)signaling pathway.Methods:Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models,with rapamycin and cyclophosphamide as positive controls.Carboxy methyl cellulose solutions of Scorpiones,Scolopendra and Gekko were administered intragastrically as 0.33,0.33,and 0.83 g/kg,respectively once daily for 21 days.Fluorescent expression were detected every 7 days after inoculation,and tumor growth curves were plotted.Immunohistochemistry was performed to determine CD31 and HIF-1αexpressions in tumor tissue and microvessel density(MVD)was analyzed.Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1αsignaling pathway-related proteins.Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1)and vascular endothelial growth factor(VEGF)in mice.Results:Scorpiones,Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α(all P<0.01).Moreover,Scorpiones,Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase(p70S6K)(P<0.05 or P<0.01).In addition,they also decreased the expression of CD31,MVD,bFGF,TGF-β1 and VEGF compared with the model group(P<0.05 or P<0.01).Conclusion:Scorpiones,Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1αsignaling pathway.展开更多
目的通过癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库分析弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)中铁死亡相关基因的表达及其与程序性死亡受体配体-1(programmed death ligand-1,PD-L1)和免疫细胞的关系,为D...目的通过癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库分析弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)中铁死亡相关基因的表达及其与程序性死亡受体配体-1(programmed death ligand-1,PD-L1)和免疫细胞的关系,为DLBCL的治疗提供新的靶标。方法通过TCGA数据库查找获得22个铁死亡相关基因。从TCGA数据库获取48例DLBCL(DLBCL组)及54例反应性淋巴结增生患者(对照组)淋巴结标本的铁死亡相关基因以及PD-L1的表达数据。使用Wilcoxon秩和检验进行组间差异性表达分析。基因表达相关性分析采用Spearman相关性分析。采用R软件包pheatmap分析DLBCL中铁死亡相关基因表达与免疫细胞的相关性。采用R软件GSVA包分析铁死亡相关基因表达与磷脂酰肌醇-3-激酶-蛋白激酶B-哺乳动物雷帕霉素靶蛋白(phosphatidylinositol 3 kinase-protein kinase B-mammalian target of rapamycin,PI3K-Akt-mTOR)信号通路的相关性。结果DLBCL中周期素依赖性激酶抑制因子1A(cyclin dependent kinase inhibitor 1A,CDKN1A)、70 kDa热休克蛋白5(heat shock 70 kDa protein 5,HSPA5)、内质膜蛋白复合体亚基2(endoplasmic membrane protein complex subunit 2,EMC2)、溶质载体家族7成员11(solute carrier family 7,member 11,SLC7A11)、金属硫蛋白1G(metallothionein 1G,MT1G)、热休克蛋白B1(heat shock protein B1,HSPB1)、谷胱甘肽过氧化酶4(glutathione peroxidase4,GPX4)、范可尼贫血互补群D2(Fanconi anemia complementary group D2,FANCD2)、柠檬酸合成酶(citrate synthase,CS)、CDGSH铁硫结构域1(CDGSH iron sulfur domain 1,CISD1)、法尼基二磷酸法尼基转移酶1(farnesyl diphosphate farnesyltransferase 1,FDFT1)、SLC1A5、转铁蛋白受体(transferrin receptor,TFRC)、核糖体蛋白L8(ribosomal protein L8,RPL8)、核受体共激活因子4(nuclear receptor coativator 4,NCOA4)、二肽基肽酶Ⅳ(dipeptidyl peptidaseⅣ,DPP4)和花生四烯酸15脂氧合酶(arachidonate-15-lipoxygenase,ALOX15)基因表达均上调(均P<0.05)。免疫细胞相关分析显示,铁死亡相关基因可激活体内巨噬细胞M1(P<0.05)。DLBCL中长链脂酰辅酶A合成酶4(acyl-CoA synthetase long chain family member 4,ACSL4)、CDKN1A、DPP4、EMC2、谷氨酰胺酶2(glutaminase 2,GLS2)、HSPA5、溶血卵磷脂酰基转移酶3(lysophosphatidylcholine acyltransferase 3,LPCAT3)、MT1G、NCOA4、红细胞衍生核因子2样蛋白2(nuclear factor erythroid 2-like-2,NFE2L2)、精脒/精胺N1-乙酰基转移酶1(spermidine/spermine N1-acetyltransferase 1,SAT1)、SLC7A11和TFRC这些铁死亡相关基因的表达均与PD-L1表达呈正相关(均r>0.4,均P<0.05)。铁死亡相关基因LPCAT3、NCOA4和TFRC的表达均与PI3K-AktmTOR通路呈正相关(均r>0.4,均P<0.05)。结论多数铁死亡相关基因在DLBCL组织中高表达,且与PD-L1、免疫浸润及PI3K-Akt-mTOR通路有关。展开更多
The phosphosphatidylinositol-3-kinase(PI3K)signaling pathway is one of the most important intracellular signal transduction pathways affecting cell functions,such as apoptosis,translation,metabolism,and angiogenesis.L...The phosphosphatidylinositol-3-kinase(PI3K)signaling pathway is one of the most important intracellular signal transduction pathways affecting cell functions,such as apoptosis,translation,metabolism,and angiogenesis.Lung cancer is a malignant tumor with the highest morbidity and mortality rates in the world.It can be divided into two groups,non-small cell lung cancer(NSCLC)and small cell lung cancer(SCLC).NSCLC accounts for>85%of all lung cancers.There are currently many clinical treatment options for NSCLC;however,traditional methods such as surgery,chemotherapy,and radiotherapy have not been able to provide patients with good survival benefits.The emergence of molecular target therapy has improved the survival and prognosis of patients with NSCLC.In recent years,there have been an increasing number of studies on NSCLC and PI3K signaling pathways.Inhibitors of various parts of the PI3K pathway have appeared in various phases of clinical trials with NSCLC as an indication.This article focuses on the role of the PI3K signaling pathway in the occurrence and development of NSCLC and summarizes the current clinical research progress and possible development strategies.展开更多
Objective To investigate the effect of emodin on high glucose(HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated pr...Objective To investigate the effect of emodin on high glucose(HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase(AMPK)/mammalian target of rapamycin(mTOR)-mediated autophagy in podocytes(MPC5 cells)in vitro.Methods MPC5 cells were treated with different concentrations of HG(2.5,5,10,20,40,80 and 160 mmol/L),emodin(2,4,8µmol/L),or HG(40 mmol/L)and emodin(4µmol/L)with or without rapamycin(Rap,100 nmol/L)and compound C(10µmol/L).The viability and apoptosis of MPC5 cells were detected using cell counting kit-8(CCK-8)assay and flow cytometry analysis,respectively.The expression levels of cleaved caspase-3,autophagy marker light chain 3(LC3)Ⅰ/Ⅱ,and AMPK/mTOR signaling pathway-related proteins were determined by Western blot.The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.Results HG at 20,40,80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells,whereas emodin(4µmol/L)significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage(P<0.01).Emodin(4µmol/L)significantly increased LC3-Ⅱ protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells(P<0.01).Furthermore,the protective effects of emodin were mimicked by rapamycin(100 nmol/L).Moreover,emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR.The AMPK inhibitor compound C(10µmol/L)reversed emodin-induced autophagy activation.Conclusion Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway,which might provide a potential therapeutic option for diabetic nephropathy.展开更多
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
文摘The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
文摘Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.
文摘Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current study aimed to explore the function and potential mechanism of TOP2A in GBC.Methods:Based on Gene Expression Profiling Interactive Analysis data,we found TOP2A was significantly up-regulated in GBC tissues and resulting in shorter overall survival.Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expression of TOP2A in 45 pairs of GBC tissues and adjacent non-tumor tissues.In vitro,cell proliferation,migration,and invasion ability were examined by cell counting kit-8 and transwell assay,respectively.Epithelial-mesenchymal transition(EMT)related and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway-related markers were measured by Western blotting.Xenograft model assay was performed to evaluate the effect of TOP2A in vivo.Results:TOP2A was found up-regulated in GBC(tumor vs.normal,12.62 vs.0.34)and correlated with the late tumor node metastasis stage(P=0.0032),present of lymph node metastasis(P=0.0273),and poor prognosis in GBC patients(log-rank P=0.028).In vitro and in vivo assays showed that knockdown of TOP2A notably inhibited cell proliferation,migration,invasion,EMT process,and tumor growth in GBC.In addition,TOP2A down-regulation significantly decreased the protein levels of phosphor(p)-PI3K,p-Akt,and p-mTOR.Conclusion:Our study demonstrates that TOP2A was overexpressed in GBC and associated with poor prognosis in GBC patients.TOP2A promotes GBC cell proliferation,migration,invasion,EMT process,and tumor growth through activating PI3K/Akt/mTOR signaling pathway,and may serve as a novel prognostic biomarker and therapeutic target for GBC.
基金Supported by the Special Scientific Research Project of the Chinese Medicine Industry of the State Administration of Traditional Chinese Medicine of China(No.201307006)National Natural Science Foundation of China(No.82104656,82004179,82074405)Fundamental Research Funds for the Central Public Welfare Research Institutes(No.ZZ14-YQ-013,ZZ15-YQ-024)。
文摘Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α(PI3K/AKT/mTOR/HIF-1α)signaling pathway.Methods:Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models,with rapamycin and cyclophosphamide as positive controls.Carboxy methyl cellulose solutions of Scorpiones,Scolopendra and Gekko were administered intragastrically as 0.33,0.33,and 0.83 g/kg,respectively once daily for 21 days.Fluorescent expression were detected every 7 days after inoculation,and tumor growth curves were plotted.Immunohistochemistry was performed to determine CD31 and HIF-1αexpressions in tumor tissue and microvessel density(MVD)was analyzed.Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1αsignaling pathway-related proteins.Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1)and vascular endothelial growth factor(VEGF)in mice.Results:Scorpiones,Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α(all P<0.01).Moreover,Scorpiones,Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase(p70S6K)(P<0.05 or P<0.01).In addition,they also decreased the expression of CD31,MVD,bFGF,TGF-β1 and VEGF compared with the model group(P<0.05 or P<0.01).Conclusion:Scorpiones,Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1αsignaling pathway.
基金Youth Program of the National Natural Science Foundation of China (to YX)(No. 82003309)
文摘The phosphosphatidylinositol-3-kinase(PI3K)signaling pathway is one of the most important intracellular signal transduction pathways affecting cell functions,such as apoptosis,translation,metabolism,and angiogenesis.Lung cancer is a malignant tumor with the highest morbidity and mortality rates in the world.It can be divided into two groups,non-small cell lung cancer(NSCLC)and small cell lung cancer(SCLC).NSCLC accounts for>85%of all lung cancers.There are currently many clinical treatment options for NSCLC;however,traditional methods such as surgery,chemotherapy,and radiotherapy have not been able to provide patients with good survival benefits.The emergence of molecular target therapy has improved the survival and prognosis of patients with NSCLC.In recent years,there have been an increasing number of studies on NSCLC and PI3K signaling pathways.Inhibitors of various parts of the PI3K pathway have appeared in various phases of clinical trials with NSCLC as an indication.This article focuses on the role of the PI3K signaling pathway in the occurrence and development of NSCLC and summarizes the current clinical research progress and possible development strategies.
基金Supported by the Chinese Medicine Research Project of Hubei Provincial Health Commission(No.ZY2019Q024)Scientific Research Project of Wuhan Municipal Health Commission(No.WX20B11)Scientific Research Project of Wuhan Municipal Health Commission(No.WZ20C01)。
文摘Objective To investigate the effect of emodin on high glucose(HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase(AMPK)/mammalian target of rapamycin(mTOR)-mediated autophagy in podocytes(MPC5 cells)in vitro.Methods MPC5 cells were treated with different concentrations of HG(2.5,5,10,20,40,80 and 160 mmol/L),emodin(2,4,8µmol/L),or HG(40 mmol/L)and emodin(4µmol/L)with or without rapamycin(Rap,100 nmol/L)and compound C(10µmol/L).The viability and apoptosis of MPC5 cells were detected using cell counting kit-8(CCK-8)assay and flow cytometry analysis,respectively.The expression levels of cleaved caspase-3,autophagy marker light chain 3(LC3)Ⅰ/Ⅱ,and AMPK/mTOR signaling pathway-related proteins were determined by Western blot.The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.Results HG at 20,40,80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells,whereas emodin(4µmol/L)significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage(P<0.01).Emodin(4µmol/L)significantly increased LC3-Ⅱ protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells(P<0.01).Furthermore,the protective effects of emodin were mimicked by rapamycin(100 nmol/L).Moreover,emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR.The AMPK inhibitor compound C(10µmol/L)reversed emodin-induced autophagy activation.Conclusion Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway,which might provide a potential therapeutic option for diabetic nephropathy.