AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro a...AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on alpha-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway.展开更多
To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (t...To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation.展开更多
This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in ...This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P0.01 or 0.05), but did not change after treatment with PD98059 (P0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P0.05), but decreased remarkably after hyperoxia (P0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia.展开更多
Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultu...Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.展开更多
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp...Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.展开更多
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase...Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.展开更多
We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis fac...We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase content were increased. Rats injected with Xuebijing, a Chinese herb compound preparation, exhibited normal cellular structure and morphology, dense neuronal cytoplasm, and decreased tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase expression at 24 hours following cardiopulmonary resuscitation. These data suggest that Xuebijing can attenuate neuronal injury induced by hypoxia and reperfusion during cardiopulmonary resuscitation.展开更多
Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein Barr virus The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen activated pro...Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein Barr virus The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen activated protein kinases (MAPKs, including ERK, JNK, and p38MAPK), and to highlight the molecular mechanism of CD 4 + cell deletion in AIDS Methods HOS cells (HOS CR2) and HOS CD4 cells (HOS CD4CR2) stably expressing CR2 were established and then identified by FACS and Western blotting Activation and blocking tests of MAPKs were assessed by Western blot Cell proliferation was determined using Cell Titer 96 Aqueous One Solution Reagent Results FACS results showed that the positive rates of HOS CR2 and HOS CD4CR2 cells were greater than 96%, and Western blot showed that the CR2 expression levels on HOS CR2 and HOS CD4CR2 cells were high Activation and blocking tests of MAPKs (ERK, JNK, and p38MAPK) were carried out in HOS CR2, HOS CD4, and HOS CD4CR2 cells The activation of MAPKs in HOS CR2 cells stimulated with PMA (100 ng/ml) and NHS (10%) was identical The activation of MAPKs increased at 5 minutes, reached a peak at 10 minutes, and decreased to baseline within 30 minutes, all in a time dependent manner; the activation of MAPKs was blocked by anti CR2 McAb, PD98059 (inhibitor of ERK), and Wortmanin (inhibitor of PI 3K), respectively In HOS CD4 cells, MAPKs were activated by HIV gp160 In HOS CD4CR2 cells, MAPK activation was induced by HIV gp160, 10% NHS, and HIV gp160+10%NHS; phosphorylation of p38MAPK was dramatically induced by HIV gp160+NHS, and lasted for 1 hour The cell proliferation results showed that HIV gp160 inhibited the proliferation of HOS CD4 and HOS CD4CR2 cells ( P <0 01) and that NHS enhanced the effect of HIV gp160 ( P <0 01) Conclusions The activation of MAPKs is independently mediated by CR2 and that anti CR2 McAb, PD98059, and Wortmanin block the activation of MAPKs, respectively The results of the signal transduction and cell proliferation assays of HOS CD4CR2 cells show that CR2 plays a role in the pathogenesis of HIV infection, especially in the inhibition of CD 4 + cell proliferation展开更多
BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP...BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP). However, the mechanisms of NMDA receptor participation in the formation and maintenance of DNP remain poorly understood. OBJECTIVE: To evaluate the role NMDA receptor plays in DNP and effects on p38 mitogen activated protein kinase (p38 MAPK) in a rat model of DNP. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Human Embryonic Stem Cell Research Institute of Yunyang Medical College Affiliated Taihe Hospital between July 2005 and September 2007. MATERIALS: Streptozotocin was provided by Sigma, USA; p38 MAPK inhibitor (SB203580) was provided by Shanghai KangChen Biotech, China; NMDA receptor antagonist (MK-801) was purchased from Shanghai Yope Biotech, China. METHODS: A total of 128 healthy, Wistar rats of clean grade, aged 3 months and weighing 180- 220 g, were randomly assigned to 4 groups: control, DNP model, p38 MAPK, and NMDA receptor. Each group contained 32 rats. DNP was established in all groups except for the control group by intraperitoneal injection of streptozocin (65 mg/kg). Subsequently, 1 mg/kg SB203580 and 1 mg/kg MK-801 were injected once each week via intraperitoneal injection in the p38 MAPK and NMDA receptor groups, respectively. MAIN OUTCOME MEASURES: At the end of 2, 4, 6, and 8 weeks following streptozotocin injection, mechanical withdrawal threshold was measured in 8 animals from each group following von Frey filament stimulation. The rats were anesthetized and nerve conduction velocity of the left sciatic nerve was measured. Subsequently, the right sciatic nerve, the lumbar segment of the spinal cord, and dorsal root ganglia were removed from the L3-6 segment for microscopic examination, p38 MAPK expression was determined using immunohistochemistry and Western blot analysis. Expression of NMDA receptor 1 mRNA in dorsal root ganglion and spinal cord neurons was detected using RT-PCR. RESULTS: Mechanical withdrawal threshold and nerve conduction velocity were significantly reduced, and p38 MAPK and NMDA receptor 1 mRNA expression in the spinal cord and dorsal root ganglia were significantly increased, in the model, p38 MAPK, and NMDA receptor groups compared with the control group at all time points (P 〈 0.05). At 4-8 weeks following successful DNP model establishment, SB203580 and MK-801 increased mechanical withdrawal threshold, accelerated nerve conduction velocity, and attenuated p38 MAPK expression, compared with the model group. The NMDA receptor group exhibited downregulated mRNA expression of NMDA receptor 1 compared with the model and p38 MAPK groups (P 〈 0.05). CONCLUSION: NMDA receptor was highly expressed in the brains of DNP rats and was involved in DNP development via activation of the p38 MAPK signal pathway.展开更多
Objective: To observe the effect of andrographolide on the activation of mitogen-activated protein kinases (MAPKs) and expression of nuclear factor- kB (NF-kB) in macrophage foam cells. Methods: The mouse perito...Objective: To observe the effect of andrographolide on the activation of mitogen-activated protein kinases (MAPKs) and expression of nuclear factor- kB (NF-kB) in macrophage foam cells. Methods: The mouse peritoneal macrophages were cultured in the media in the presence of oxidized low-density lipoprotein (ox-LDL), ox-LDL+andrographolide, or neither (control). The phosphorylation of MAPK molecules (p38MAPK, JNK, ERK1/2) and the expressions of NK- kB p65 were examined by Western blot. Results: As compared with cells in the control group, the expressions of phospho-p38 and NF- kB p65 were increased in the cells cultured with either ox-LDL or ox-LDL+andrographolide (P〈0.01), but attenuated significantly in the presence of ox-LDL+ andrographolide when compared with ox-LDL (P〈0.05). The phospho-JNK increased in the presence of either ox-LDL or ox-LDL+andrographolide when compared with control cells (P〈0.01), but no significant difference existed between ox-LDL and ox-LDL+andrographolide (P〉0.05). The expression of phospho-ERK1/2 was increased in the presence of ox-LDL compared with the control cells (P〈0.01), but no significant differences existed between the cells cultured in the presence of ox-LDL+andrographolide and the control medium (P〉0.05). Conclusions: Andrographolide could inhibit the activation of ERK1/2, p38MAPK and NK-kB induced by ox-LDL in macrophage foam cells, which might be one of its mechanisms in preventing atherosclerosis.展开更多
Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gast...Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gastric ischemia-reperfusion (GI-R). And we elucidated the molecular mechanisms of the protection of PVN from GI-R injuries. Methods Sprague-Dawley rats were divided randomly into 4 groups: Group I, the sham-operated GI-R control group; Group II, the sham-operated electrical stimulations to PVN + sham-operated GI-R control group; Group III, the GI-R group; and Group IV, the electrical stimulations to PVN + GI-R group. In all of the experiments, the PVN was stimulated prior to the induction of GI-R. The GI-R model was established by clamping the celiac artery for 30 minutes to induce ischemia and then was released to allow reperfusion for 30 minutes, 1 hour, 3 hours and 6 hours, respectively. The gastric mucosal cellular apoptosis, proliferation, and the expression and activity of MAPKs protein were observed by immunohistochemistry and Western blotting, respectively. Results Compared with the GI-R group, the application of electrical stimulations in the PVN significantly depressed gastric mucosal cellular apoptosis and enhanced gastric mucosal cellular proliferation following the 30-minute, 1-hour and 3-hour intervals of reperfusion; it also promoted the activation of p-ERK during the early phase of reperfusion but inhibited the activation of p-JNK1/2 and p-p38 following the 30-minute, 1-hour and 3-hour intervals of reperfusion. Conclusions The protection of PVN against GI-R injuries may attribute to the inhibition of apoptosis and the promotion of the proliferation of gastric mucosal cells during GI-R. This protective effect is mediated by activating the ERK pathway and depressing the JNK, the JNK. p38 MAPK oathwavs of the oastric mucosal cells.展开更多
Background Estrogen deficiency results in loss of bone mass compounds with estrogen-like activity that bind to estrogen receptors effect of the phytoestrogen puerarin on adult mouse osteoblasts. Methods Osteoblast cel...Background Estrogen deficiency results in loss of bone mass compounds with estrogen-like activity that bind to estrogen receptors effect of the phytoestrogen puerarin on adult mouse osteoblasts. Methods Osteoblast cells were harvested from 8-month old female Phytoestrogens are plant-derived non-steroidal The main aim of this study was to investigate the mprinting control region (ICR) mice. The effects of puerarin stimulation on the proliferation, differentiation and maturation of osteoblasts were examined. The production of nitric oxide (NO) and the expression of bone morphogenetic protein-2 (BMP-2), SMAD4, mitogen-activated protein kinases (MAPK), core binding factor all runt-related transcription factor 2 (Cbfal/Runx2), osteoprotegerin (OPG), and receptor activator of NF-KB ligand (RANKL) genes were analyzed. The activation of signal pathways was further confirmed by specific pathway inhibitors. Results The osteoblast viability reached its maximum at 10-8 mol/L puerarin. At this concentration, puerarin increases the proliferation and matrix mineralization of osteoblasts and promotes NO synthesis. With 108 mol/L puerarin treatment, BMP-2, SMAD4, Cbfal/Runx2, and OPG gene expression were up-regulated, while the RANKL gene expression is down-regulated. Concurrent treatment involving the (bone morphogenetic protein) BMP antagonist Noggin or the NOS inhibitor L-NAME diminishes puerarin induced cell proliferation, Alkaline phosphatase (ALP) activity, NO production, as well as the BMP-2, SMAD4, Cbfal/Runx2, OPG, and RANKL gene expression. Conclusions In this in vitro study, we demonstrate that puerarin is a bone anabolic agent that exerts its osteogenic effects through the induction of BMP-2 and NO synthesis, subsequently regulating Cbfal/Runx2, OPG, and RANKL gene expression. This effect may contribute to its induction of osteoblast proliferation and differentiation, resulting in bone formation.展开更多
Background Invasive aspergillosis (IA), which is mainly caused by Aspergillus fumigatus (A. fumigatus), is a major cause of morbidity and mortality in immunocompromised patients. Despite considerable progress in c...Background Invasive aspergillosis (IA), which is mainly caused by Aspergillus fumigatus (A. fumigatus), is a major cause of morbidity and mortality in immunocompromised patients. Despite considerable progress in currently available antifungals the mortality still remains high in critically ill patients. U0126 which is a highly selective inhibitor of MEK1 and MEK2 in the RAF/MEK/ERK pathway in mammalian cells has been demonstrated to have an anti-proliferative role in cancer cells. The purpose of this study was to explore the role of U0126 on growth inhibition and activation of mitogen-activated protein kinases (MAPKs) in A. fumigatus. Methods Germination percentage and hyphae growth in A. fumigatus treated with U0126 were observed and compared with untreated controls. Western blotting analysis was used to detect changes in activation of SakA, MpkA and MpkB. Results U0126 inhibited germination and hyphae growth in A. fumigatus and enhanced the phosphorylation of SakA and MpkA under oxidative stress. U0126 at 10 pmol/L did not block the activation of MpkB during nitrogen starvation stress. Conclusion U0126 shows promise as an antifungal candidate and the MAPK pathway may be a possible antifungal drug target for A. fumigatus.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on...Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on tetrachloromethane induced liver fibrosis in rats and its modulation on the p38 MAPK signalling pathway. Methods One hundred and twenty healthy male Sprague-Dawley rats were randomly assigned to six groups: normal (n=20), induced fibrosis (n=20), colchicine (n=20) and three treatment groups of oxymatrine (n=20x3). We obesrved changes in deposition of collagen, hyaluronic acid (HA), laminin (LN), collagen type IV (CIV), procollagen III (PCIll) and hydroxyproline (Hyp), a-smooth muscle actin (α-SMA) and phosphor-p38 (pp38). Results The relative indicators of changes in histopathology, HA, LN, CIV, PCIII, Hyp, a-SMA and pp38 were raised significantly in the induced fibrosis group (P〈0.01 vs normal group). The semiquantitative hepatic fibrosis staging scores of middle dose group and high dose group were decreased (P 〈0.05 and P 〈0.01 respectively vs the induced fibrosis group), as was the average area of collagen in rats' liver, the concentrations of serum HA, LN, CIV, PCIII and liver tissue homogenate Hyp. The gene expression of α-SMA mRNA was considerably decreased in the treated animals, as was the protein espression of pp38 protein. Conclusions Oxymatrine is effective in reducing the production and deposition of collagen in the liver tissue of experimental rats in ways which relate to modulating the fibrogenic signal transduction via p38 MAPK signalling pathway.展开更多
Background p38 mitogen-activated protein kinases (MAPK) in ischemic preconditioning (IPC) may be essential to cardioprotection. We assessed whether protective effect of morphine-induced preconditioning (MPC) on ...Background p38 mitogen-activated protein kinases (MAPK) in ischemic preconditioning (IPC) may be essential to cardioprotection. We assessed whether protective effect of morphine-induced preconditioning (MPC) on myocardial ischemia and reperfusion injury in rat hearts involved p38 MAPK activation.Methods Male Spargue-Dawley rats (weighing 300--350 g) were randomly assigned to 1 of the following 8 groups: control (CON, saline vehicle, n=9), SB 203580 (SB, a p38 MAPK inhibitor, n=6), MPC (n=6), IPC (n=9), SB+MPC, SB+IPC, MPC+SB, and IPC+SB (n=6). Infarct sizes (IS), a percentage of the area at risk (AAR), were determined by triphenyltetrazolium (TTC) staining. Hssue samples were processed from the entire AAR of left ventricle for the determination of p38 MAPK protein expression (5 hearts/group). The bands representing the proteins were visualized using an enhanced chemiluminescence detection system. Results The IS/AAR was significantly reduced by I PC (12.9±1.6)% or MPC (25.3±2.9)% compared to the control (52.7±5.5)%. SB 203580 administered prior to preconditioning abolished the effect of IPC (SB+IPC: (43.8±2.6)%, P〉0.05 vs CON, P〈0.01 vs IPC), but not MPC (SB+MPC: (30.7±0.9)%, P〈0.01 vs CON, P〉0.05 vs MPC). Treatment with SB 203580 prior to sustained ischemia diminished the protective effect of both MPC (MPC+SB: (42.4±2.9)%, P〉0.05 vs CON) and IPC (IPC+SB: (52.0±2.5)%, P〉0.05 vs CON) on IS/AAR. In the IPC group, phospho-p38 MAPK protein increased significantly within 5 minutes into ischemia and remained elevated at 30 minutes into reperfusion, while phospho-p38 MAPK protein in the MPC group only increased significantly at 30 minutes into reperfusion.Conclusion The activation of p38 MAPK just acts as a mediator of MPC,whereas it acts as both a trigger and a mediator in IPC.展开更多
Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunopre...Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunoprecipitation (IP) using MAPK antibody or kinase assay in vitro also showed that CHN-induced 42 kD and 39 kD protein kinases belonged to the MAPK family. PD98059 suppressed CHN-induced transcriptions of ginseng squalene synthase and ginseng squalene epoxidase genes (gss and gse), CHN-induced accumulation of β-Amyrin synthase (β-AS) and synthesis of saponin. These results showed that CHN-induced activities of MAPKs were necessary for the CHN-induced saponin synthesis. EGTA and LaCl3 suppressed CHN-induced 39 kD and 42 kD MAPK activities. Ruthenium red (RR) could suppress CHN-induced 39 kD activity. All of them suppressed CHN-induced saponin synthesis. These results indicated that CHN-induced increment of cytosolic calcium was necessary for CHN-induced saponin synthesis. PD98059 also suppressed CHN-induced oxidative burst (including the increment of activity of plasma membrane NADPH oxidase and production of H2O2), but diphenylene iodonium (DPI), dimethylthiourea (DMTU) and 2,5-dihydroxycinnamic acid methyl ester (DHC) could not suppress CHN-induced MAPK activities, which indicated that MAPK was possibly function upstream of CHN-induced oxidative burst. Keywords mitogen-activated protein kinase - chitosan - saponin展开更多
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr...Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.展开更多
Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylog...Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase(MAPK) family members to primate torpor were compared in six organs of control(aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases(ERKs), c-jun NH2-terminal kinases(JNKs), MAPK kinase(MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27(HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.展开更多
BACKGROUND Enterotoxigenic Bacteroides fragilis(ETBF)causes colitis and diarrhea,and is considered a candidate pathogen in inflammatory bowel diseases as well as colorectal cancers.These diseases are dependent on ETBF...BACKGROUND Enterotoxigenic Bacteroides fragilis(ETBF)causes colitis and diarrhea,and is considered a candidate pathogen in inflammatory bowel diseases as well as colorectal cancers.These diseases are dependent on ETBF-secreted toxin(BFT).Dendritic cells(DCs)play an important role in directing the nature of adaptive immune responses to bacterial infection and heme oxygenase-1(HO-1)is involved in the regulation of DC function.AIM To investigate the role of BFT in HO-1 expression in DCs.METHODS Murine DCs were generated from specific pathogen-free C57BL/6 and Nrf2−/−knockout mice.DCs were exposed to BFT,after which HO-1 expression and the related signaling factor activation were measured by quantitative RT-PCR,EMSA,fluorescent microscopy,immunoblot,and ELISA.RESULTS HO-1 expression was upregulated in DCs stimulated with BFT.Although BFT activated transcription factors such as NF-κB,AP-1,and Nrf2,activation of NF-κB and AP-1 was not involved in the induction of HO-1 expression in BFT-exposed DCs.Instead,upregulation of HO-1 expression was dependent on Nrf2 activation in DCs.Moreover,HO-1 expression via Nrf2 in DCs was regulated by mitogenactivated protein kinases such as ERK and p38.Furthermore,BFT enhanced the production of reactive oxygen species(ROS)and inhibition of ROS production resulted in a significant decrease of phospho-ERK,phospho-p38,Nrf2,and HO-1 CONCLUSION These results suggest that signaling pathways involving ROS-mediated ERK and p38 mitogen-activated protein kinases-Nrf2 activation in DCs are required for HO-1 induction during exposure to ETBF-produced BFT.展开更多
基金Supported by the Liver Fibrosis Foundation of Wang BaoEn of China,No.20100033the Science and Technology Foundation of Shaanxi Province of China,No.2010K01-199
文摘AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on alpha-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway.
基金This project was supported by a grant from the NationalKey Science and Technology Program of the Tenth Five-years-Plan (No .2004BA720A11) ,and a grant from Nation-al Natural Sciences Foundation of China (No .30471824)
文摘To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation.
基金supported by a grant from the Nature Sciences Foundation of China (No. 30872795)
文摘This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P0.01 or 0.05), but did not change after treatment with PD98059 (P0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P0.05), but decreased remarkably after hyperoxia (P0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia.
基金in part by Natural Sciences Foundation of China (No. 39870239)by the Sasagawa Fellowship,Japan.
文摘Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.
文摘Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.
基金supported in part by grants from the Young Scientists Awards Foundation of Shandong Province of China,No.BS2013YY049the China Postdoctoral Science Foundation,No.2012M511036
文摘Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.
基金a grant from the Science and Technology Department of Jilin Province,No. 200705172
文摘We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase content were increased. Rats injected with Xuebijing, a Chinese herb compound preparation, exhibited normal cellular structure and morphology, dense neuronal cytoplasm, and decreased tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase expression at 24 hours following cardiopulmonary resuscitation. These data suggest that Xuebijing can attenuate neuronal injury induced by hypoxia and reperfusion during cardiopulmonary resuscitation.
文摘Background Complement receptor type 2 (CR2) is the receptor for C3d and C3dg and for Epstein Barr virus The aim of our study was to explore whether CR2 can independently mediate the activation of mitogen activated protein kinases (MAPKs, including ERK, JNK, and p38MAPK), and to highlight the molecular mechanism of CD 4 + cell deletion in AIDS Methods HOS cells (HOS CR2) and HOS CD4 cells (HOS CD4CR2) stably expressing CR2 were established and then identified by FACS and Western blotting Activation and blocking tests of MAPKs were assessed by Western blot Cell proliferation was determined using Cell Titer 96 Aqueous One Solution Reagent Results FACS results showed that the positive rates of HOS CR2 and HOS CD4CR2 cells were greater than 96%, and Western blot showed that the CR2 expression levels on HOS CR2 and HOS CD4CR2 cells were high Activation and blocking tests of MAPKs (ERK, JNK, and p38MAPK) were carried out in HOS CR2, HOS CD4, and HOS CD4CR2 cells The activation of MAPKs in HOS CR2 cells stimulated with PMA (100 ng/ml) and NHS (10%) was identical The activation of MAPKs increased at 5 minutes, reached a peak at 10 minutes, and decreased to baseline within 30 minutes, all in a time dependent manner; the activation of MAPKs was blocked by anti CR2 McAb, PD98059 (inhibitor of ERK), and Wortmanin (inhibitor of PI 3K), respectively In HOS CD4 cells, MAPKs were activated by HIV gp160 In HOS CD4CR2 cells, MAPK activation was induced by HIV gp160, 10% NHS, and HIV gp160+10%NHS; phosphorylation of p38MAPK was dramatically induced by HIV gp160+NHS, and lasted for 1 hour The cell proliferation results showed that HIV gp160 inhibited the proliferation of HOS CD4 and HOS CD4CR2 cells ( P <0 01) and that NHS enhanced the effect of HIV gp160 ( P <0 01) Conclusions The activation of MAPKs is independently mediated by CR2 and that anti CR2 McAb, PD98059, and Wortmanin block the activation of MAPKs, respectively The results of the signal transduction and cell proliferation assays of HOS CD4CR2 cells show that CR2 plays a role in the pathogenesis of HIV infection, especially in the inhibition of CD 4 + cell proliferation
基金a Grant from Hubei Provincial Health Ministry,No.JX3C58
文摘BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP). However, the mechanisms of NMDA receptor participation in the formation and maintenance of DNP remain poorly understood. OBJECTIVE: To evaluate the role NMDA receptor plays in DNP and effects on p38 mitogen activated protein kinase (p38 MAPK) in a rat model of DNP. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Human Embryonic Stem Cell Research Institute of Yunyang Medical College Affiliated Taihe Hospital between July 2005 and September 2007. MATERIALS: Streptozotocin was provided by Sigma, USA; p38 MAPK inhibitor (SB203580) was provided by Shanghai KangChen Biotech, China; NMDA receptor antagonist (MK-801) was purchased from Shanghai Yope Biotech, China. METHODS: A total of 128 healthy, Wistar rats of clean grade, aged 3 months and weighing 180- 220 g, were randomly assigned to 4 groups: control, DNP model, p38 MAPK, and NMDA receptor. Each group contained 32 rats. DNP was established in all groups except for the control group by intraperitoneal injection of streptozocin (65 mg/kg). Subsequently, 1 mg/kg SB203580 and 1 mg/kg MK-801 were injected once each week via intraperitoneal injection in the p38 MAPK and NMDA receptor groups, respectively. MAIN OUTCOME MEASURES: At the end of 2, 4, 6, and 8 weeks following streptozotocin injection, mechanical withdrawal threshold was measured in 8 animals from each group following von Frey filament stimulation. The rats were anesthetized and nerve conduction velocity of the left sciatic nerve was measured. Subsequently, the right sciatic nerve, the lumbar segment of the spinal cord, and dorsal root ganglia were removed from the L3-6 segment for microscopic examination, p38 MAPK expression was determined using immunohistochemistry and Western blot analysis. Expression of NMDA receptor 1 mRNA in dorsal root ganglion and spinal cord neurons was detected using RT-PCR. RESULTS: Mechanical withdrawal threshold and nerve conduction velocity were significantly reduced, and p38 MAPK and NMDA receptor 1 mRNA expression in the spinal cord and dorsal root ganglia were significantly increased, in the model, p38 MAPK, and NMDA receptor groups compared with the control group at all time points (P 〈 0.05). At 4-8 weeks following successful DNP model establishment, SB203580 and MK-801 increased mechanical withdrawal threshold, accelerated nerve conduction velocity, and attenuated p38 MAPK expression, compared with the model group. The NMDA receptor group exhibited downregulated mRNA expression of NMDA receptor 1 compared with the model and p38 MAPK groups (P 〈 0.05). CONCLUSION: NMDA receptor was highly expressed in the brains of DNP rats and was involved in DNP development via activation of the p38 MAPK signal pathway.
文摘Objective: To observe the effect of andrographolide on the activation of mitogen-activated protein kinases (MAPKs) and expression of nuclear factor- kB (NF-kB) in macrophage foam cells. Methods: The mouse peritoneal macrophages were cultured in the media in the presence of oxidized low-density lipoprotein (ox-LDL), ox-LDL+andrographolide, or neither (control). The phosphorylation of MAPK molecules (p38MAPK, JNK, ERK1/2) and the expressions of NK- kB p65 were examined by Western blot. Results: As compared with cells in the control group, the expressions of phospho-p38 and NF- kB p65 were increased in the cells cultured with either ox-LDL or ox-LDL+andrographolide (P〈0.01), but attenuated significantly in the presence of ox-LDL+ andrographolide when compared with ox-LDL (P〈0.05). The phospho-JNK increased in the presence of either ox-LDL or ox-LDL+andrographolide when compared with control cells (P〈0.01), but no significant difference existed between ox-LDL and ox-LDL+andrographolide (P〉0.05). The expression of phospho-ERK1/2 was increased in the presence of ox-LDL compared with the control cells (P〈0.01), but no significant differences existed between the cells cultured in the presence of ox-LDL+andrographolide and the control medium (P〉0.05). Conclusions: Andrographolide could inhibit the activation of ERK1/2, p38MAPK and NK-kB induced by ox-LDL in macrophage foam cells, which might be one of its mechanisms in preventing atherosclerosis.
基金grants from the National Natural Science Foundation of China(No.30370533and30570671)Educational Department Science Research Foundation of Jiangsu Province(No. 05KJB310134)
文摘Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gastric ischemia-reperfusion (GI-R). And we elucidated the molecular mechanisms of the protection of PVN from GI-R injuries. Methods Sprague-Dawley rats were divided randomly into 4 groups: Group I, the sham-operated GI-R control group; Group II, the sham-operated electrical stimulations to PVN + sham-operated GI-R control group; Group III, the GI-R group; and Group IV, the electrical stimulations to PVN + GI-R group. In all of the experiments, the PVN was stimulated prior to the induction of GI-R. The GI-R model was established by clamping the celiac artery for 30 minutes to induce ischemia and then was released to allow reperfusion for 30 minutes, 1 hour, 3 hours and 6 hours, respectively. The gastric mucosal cellular apoptosis, proliferation, and the expression and activity of MAPKs protein were observed by immunohistochemistry and Western blotting, respectively. Results Compared with the GI-R group, the application of electrical stimulations in the PVN significantly depressed gastric mucosal cellular apoptosis and enhanced gastric mucosal cellular proliferation following the 30-minute, 1-hour and 3-hour intervals of reperfusion; it also promoted the activation of p-ERK during the early phase of reperfusion but inhibited the activation of p-JNK1/2 and p-p38 following the 30-minute, 1-hour and 3-hour intervals of reperfusion. Conclusions The protection of PVN against GI-R injuries may attribute to the inhibition of apoptosis and the promotion of the proliferation of gastric mucosal cells during GI-R. This protective effect is mediated by activating the ERK pathway and depressing the JNK, the JNK. p38 MAPK oathwavs of the oastric mucosal cells.
文摘Background Estrogen deficiency results in loss of bone mass compounds with estrogen-like activity that bind to estrogen receptors effect of the phytoestrogen puerarin on adult mouse osteoblasts. Methods Osteoblast cells were harvested from 8-month old female Phytoestrogens are plant-derived non-steroidal The main aim of this study was to investigate the mprinting control region (ICR) mice. The effects of puerarin stimulation on the proliferation, differentiation and maturation of osteoblasts were examined. The production of nitric oxide (NO) and the expression of bone morphogenetic protein-2 (BMP-2), SMAD4, mitogen-activated protein kinases (MAPK), core binding factor all runt-related transcription factor 2 (Cbfal/Runx2), osteoprotegerin (OPG), and receptor activator of NF-KB ligand (RANKL) genes were analyzed. The activation of signal pathways was further confirmed by specific pathway inhibitors. Results The osteoblast viability reached its maximum at 10-8 mol/L puerarin. At this concentration, puerarin increases the proliferation and matrix mineralization of osteoblasts and promotes NO synthesis. With 108 mol/L puerarin treatment, BMP-2, SMAD4, Cbfal/Runx2, and OPG gene expression were up-regulated, while the RANKL gene expression is down-regulated. Concurrent treatment involving the (bone morphogenetic protein) BMP antagonist Noggin or the NOS inhibitor L-NAME diminishes puerarin induced cell proliferation, Alkaline phosphatase (ALP) activity, NO production, as well as the BMP-2, SMAD4, Cbfal/Runx2, OPG, and RANKL gene expression. Conclusions In this in vitro study, we demonstrate that puerarin is a bone anabolic agent that exerts its osteogenic effects through the induction of BMP-2 and NO synthesis, subsequently regulating Cbfal/Runx2, OPG, and RANKL gene expression. This effect may contribute to its induction of osteoblast proliferation and differentiation, resulting in bone formation.
文摘Background Invasive aspergillosis (IA), which is mainly caused by Aspergillus fumigatus (A. fumigatus), is a major cause of morbidity and mortality in immunocompromised patients. Despite considerable progress in currently available antifungals the mortality still remains high in critically ill patients. U0126 which is a highly selective inhibitor of MEK1 and MEK2 in the RAF/MEK/ERK pathway in mammalian cells has been demonstrated to have an anti-proliferative role in cancer cells. The purpose of this study was to explore the role of U0126 on growth inhibition and activation of mitogen-activated protein kinases (MAPKs) in A. fumigatus. Methods Germination percentage and hyphae growth in A. fumigatus treated with U0126 were observed and compared with untreated controls. Western blotting analysis was used to detect changes in activation of SakA, MpkA and MpkB. Results U0126 inhibited germination and hyphae growth in A. fumigatus and enhanced the phosphorylation of SakA and MpkA under oxidative stress. U0126 at 10 pmol/L did not block the activation of MpkB during nitrogen starvation stress. Conclusion U0126 shows promise as an antifungal candidate and the MAPK pathway may be a possible antifungal drug target for A. fumigatus.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.
文摘Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on tetrachloromethane induced liver fibrosis in rats and its modulation on the p38 MAPK signalling pathway. Methods One hundred and twenty healthy male Sprague-Dawley rats were randomly assigned to six groups: normal (n=20), induced fibrosis (n=20), colchicine (n=20) and three treatment groups of oxymatrine (n=20x3). We obesrved changes in deposition of collagen, hyaluronic acid (HA), laminin (LN), collagen type IV (CIV), procollagen III (PCIll) and hydroxyproline (Hyp), a-smooth muscle actin (α-SMA) and phosphor-p38 (pp38). Results The relative indicators of changes in histopathology, HA, LN, CIV, PCIII, Hyp, a-SMA and pp38 were raised significantly in the induced fibrosis group (P〈0.01 vs normal group). The semiquantitative hepatic fibrosis staging scores of middle dose group and high dose group were decreased (P 〈0.05 and P 〈0.01 respectively vs the induced fibrosis group), as was the average area of collagen in rats' liver, the concentrations of serum HA, LN, CIV, PCIII and liver tissue homogenate Hyp. The gene expression of α-SMA mRNA was considerably decreased in the treated animals, as was the protein espression of pp38 protein. Conclusions Oxymatrine is effective in reducing the production and deposition of collagen in the liver tissue of experimental rats in ways which relate to modulating the fibrogenic signal transduction via p38 MAPK signalling pathway.
基金This study was supported by a grant from the National Natural Sicence Foundation of China(No.30672032).
文摘Background p38 mitogen-activated protein kinases (MAPK) in ischemic preconditioning (IPC) may be essential to cardioprotection. We assessed whether protective effect of morphine-induced preconditioning (MPC) on myocardial ischemia and reperfusion injury in rat hearts involved p38 MAPK activation.Methods Male Spargue-Dawley rats (weighing 300--350 g) were randomly assigned to 1 of the following 8 groups: control (CON, saline vehicle, n=9), SB 203580 (SB, a p38 MAPK inhibitor, n=6), MPC (n=6), IPC (n=9), SB+MPC, SB+IPC, MPC+SB, and IPC+SB (n=6). Infarct sizes (IS), a percentage of the area at risk (AAR), were determined by triphenyltetrazolium (TTC) staining. Hssue samples were processed from the entire AAR of left ventricle for the determination of p38 MAPK protein expression (5 hearts/group). The bands representing the proteins were visualized using an enhanced chemiluminescence detection system. Results The IS/AAR was significantly reduced by I PC (12.9±1.6)% or MPC (25.3±2.9)% compared to the control (52.7±5.5)%. SB 203580 administered prior to preconditioning abolished the effect of IPC (SB+IPC: (43.8±2.6)%, P〉0.05 vs CON, P〈0.01 vs IPC), but not MPC (SB+MPC: (30.7±0.9)%, P〈0.01 vs CON, P〉0.05 vs MPC). Treatment with SB 203580 prior to sustained ischemia diminished the protective effect of both MPC (MPC+SB: (42.4±2.9)%, P〉0.05 vs CON) and IPC (IPC+SB: (52.0±2.5)%, P〉0.05 vs CON) on IS/AAR. In the IPC group, phospho-p38 MAPK protein increased significantly within 5 minutes into ischemia and remained elevated at 30 minutes into reperfusion, while phospho-p38 MAPK protein in the MPC group only increased significantly at 30 minutes into reperfusion.Conclusion The activation of p38 MAPK just acts as a mediator of MPC,whereas it acts as both a trigger and a mediator in IPC.
基金This work was supported by the National Natural Science Foundation of China(Grant No.39870050)the Chinese Academy of Sciences(Grant No.KSCX2-SW-322).
文摘Chitosan (CHN) specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells, which could be suppressed by an inhibitor of mitogen-activated protein kinase (MAPK) pathway, PD98059. The immunoprecipitation (IP) using MAPK antibody or kinase assay in vitro also showed that CHN-induced 42 kD and 39 kD protein kinases belonged to the MAPK family. PD98059 suppressed CHN-induced transcriptions of ginseng squalene synthase and ginseng squalene epoxidase genes (gss and gse), CHN-induced accumulation of β-Amyrin synthase (β-AS) and synthesis of saponin. These results showed that CHN-induced activities of MAPKs were necessary for the CHN-induced saponin synthesis. EGTA and LaCl3 suppressed CHN-induced 39 kD and 42 kD MAPK activities. Ruthenium red (RR) could suppress CHN-induced 39 kD activity. All of them suppressed CHN-induced saponin synthesis. These results indicated that CHN-induced increment of cytosolic calcium was necessary for CHN-induced saponin synthesis. PD98059 also suppressed CHN-induced oxidative burst (including the increment of activity of plasma membrane NADPH oxidase and production of H2O2), but diphenylene iodonium (DPI), dimethylthiourea (DMTU) and 2,5-dihydroxycinnamic acid methyl ester (DHC) could not suppress CHN-induced MAPK activities, which indicated that MAPK was possibly function upstream of CHN-induced oxidative burst. Keywords mitogen-activated protein kinase - chitosan - saponin
基金supported by the National Natural Science Foundation of China,No.81173355
文摘Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.
基金supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 6793)a grant from the Heart and Stroke Foundation of Canada (Grant No. G-140005874) to KBS. KBS holds the Canada Research Chair in Molecular PhysiologyKKB, CWW, and SNT all held NSERC postgraduate scholarships
文摘Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primates and, in phylogenetic terms, is very close to the human lineage. To explore the regulatory mechanisms that underlie primate torpor, we analyzed signal transduction cascades to discover those involved in coordinating tissue responses during torpor. The responses of mitogen-activated protein kinase(MAPK) family members to primate torpor were compared in six organs of control(aroused) versus torpid gray mouse lemurs, Microcebus murinus. The proteins examined include extracellular signal-regulated kinases(ERKs), c-jun NH2-terminal kinases(JNKs), MAPK kinase(MEK), and p38, in addition to stress-related proteins p53 and heat shock protein 27(HSP27). The activation of specific MAPK signal transduction pathways may provide a mechanism to regulate the expression of torpor-responsive genes or the regulation of selected downstream cellular processes. In response to torpor, each MAPK subfamily responded differently during torpor and each showed organ-specific patterns of response. For example, skeletal muscle displayed elevated relative phosphorylation of ERK1/2 during torpor. Interestingly, adipose tissues showed the highest degree of MAPK activation. Brown adipose tissue displayed an activation of ERK1/2 and p38, whereas white adipose tissue showed activation of ERK1/2, p38, MEK, and JNK during torpor. Importantly, both adipose tissues possess specialized functions that are critical for torpor, with brown adipose required for non-shivering thermogenesis and white adipose utilized as the primary source of lipid fuel for torpor. Overall, these data indicate crucial roles of MAPKs in the regulation of primate organs during torpor.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology,South Korea,No.NRF-2018R1D1A1B07043350
文摘BACKGROUND Enterotoxigenic Bacteroides fragilis(ETBF)causes colitis and diarrhea,and is considered a candidate pathogen in inflammatory bowel diseases as well as colorectal cancers.These diseases are dependent on ETBF-secreted toxin(BFT).Dendritic cells(DCs)play an important role in directing the nature of adaptive immune responses to bacterial infection and heme oxygenase-1(HO-1)is involved in the regulation of DC function.AIM To investigate the role of BFT in HO-1 expression in DCs.METHODS Murine DCs were generated from specific pathogen-free C57BL/6 and Nrf2−/−knockout mice.DCs were exposed to BFT,after which HO-1 expression and the related signaling factor activation were measured by quantitative RT-PCR,EMSA,fluorescent microscopy,immunoblot,and ELISA.RESULTS HO-1 expression was upregulated in DCs stimulated with BFT.Although BFT activated transcription factors such as NF-κB,AP-1,and Nrf2,activation of NF-κB and AP-1 was not involved in the induction of HO-1 expression in BFT-exposed DCs.Instead,upregulation of HO-1 expression was dependent on Nrf2 activation in DCs.Moreover,HO-1 expression via Nrf2 in DCs was regulated by mitogenactivated protein kinases such as ERK and p38.Furthermore,BFT enhanced the production of reactive oxygen species(ROS)and inhibition of ROS production resulted in a significant decrease of phospho-ERK,phospho-p38,Nrf2,and HO-1 CONCLUSION These results suggest that signaling pathways involving ROS-mediated ERK and p38 mitogen-activated protein kinases-Nrf2 activation in DCs are required for HO-1 induction during exposure to ETBF-produced BFT.