期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Isoentropic and Isoenthalpic Temperatures of Protein Unfolding in Hydrophobic Interaction Chromatography
1
作者 Yah YAN Rui Xian LIU +2 位作者 Yin Mao WEI Ye Hua SHEN Xin Du GENG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第1期105-108,共4页
The thermal behaviors of five proteins in hydrophobic interaction chromatography (HIC) were investigated in the temperature range from 0 to 50℃. The thermodynamic parameters (△H°,△S°, △Cp°and △G... The thermal behaviors of five proteins in hydrophobic interaction chromatography (HIC) were investigated in the temperature range from 0 to 50℃. The thermodynamic parameters (△H°,△S°, △Cp°and △G°) of these proteins in the process of retention and unfolding were determined. The existence of enthalpy and entropy convergence with temperature was confirmed. The differences of the isoentropic and isoenthalpic temperatures for protein unfolding in HIC system from the traditional solution were elucidated. 展开更多
关键词 Column liquid chromatography hydrophobic interaction chromatography protein unfolding thermodynamic convergence.
下载PDF
Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers 被引量:2
2
作者 Huanhuan Su Hao Sun +3 位作者 Haiyan Hong Zilong Guo Ping Yu Hu Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期595-599,共5页
Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have m... Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics. 展开更多
关键词 protein folding and unfolding magnetic tweezers free energy landscape transition state
下载PDF
The physiological role of the unfolded protein response in the nervous system
3
作者 Shuangchan Wu Wensheng Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2411-2420,共10页
The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo... The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness. 展开更多
关键词 MYELIN NEURON OLIGODENDROCYTE Schwann cell unfolded protein response
下载PDF
Mesenchymal stromal cells modulate unfolded protein response and preserve β-cell mass in type 1 diabetes
4
作者 SIYUAN LIU YUAN ZHAO +4 位作者 YU YU DOU YE QIAN WANG ZHAOYAN WANG ZUO LUAN 《BIOCELL》 SCIE 2024年第7期1115-1126,共12页
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re... Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice. 展开更多
关键词 Type 1 diabetes Mesenchymal stromal cells Endoplasmic reticulum stress Unfolded protein response Non-obese diabetic mice
下载PDF
Regulation and function of endoplasmic reticulum autophagy in neurodegenerative diseases
5
作者 Xiu-Yun Zhao De-En Xu +3 位作者 Ming-Lei Wu Ji-Chuan Liu Zi-Ling Shi Quan-Hong Ma 《Neural Regeneration Research》 SCIE CAS 2025年第1期6-20,共15页
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i... The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders. 展开更多
关键词 AUTOPHAGY endoplasmic reticulum endoplasmic reticulum autophagy endoplasmic reticulum quality control system endoplasmic reticulum receptors endoplasmic reticulum-associated degradation NEURODEGENERATION neurodegenerative disease selective autophagy unfolded protein response
下载PDF
The Life of a Protein Molecule——Protein Quality Control
6
作者 刘泰麟 赵翔 李立新 《Agricultural Science & Technology》 CAS 2012年第5期921-930,934,共11页
The research progress in molecular chaperones, unfolded protein response (UPR) and ER-associated degradation (ERAD) involved in the protein quality control was summarized in this paper, and then the existing probl... The research progress in molecular chaperones, unfolded protein response (UPR) and ER-associated degradation (ERAD) involved in the protein quality control was summarized in this paper, and then the existing problems and the future devel- opment prospect were also discussed. It was pointed out that the life process of protein experienced four stages including synthesizing, folding, assembling and degradation, while each stage required strict quality control. In endoplasmic reticulum (ER), a variety of proteins had been synthesized, folded and modified to form func- tional proteins with certain conformation. When the folding was blocked in ER, the unfolded proteins would aggregate and induce the UPR, which up-regulated the level of modification enzymes folded by a series of molecular chaperones and proteins to help them accomplish folding and assembling. If these proteins were still folded incorrectly, they would enter into ERAD for being degraded. 展开更多
关键词 protein quality control Unfolded protein response (UPR) ER-associated degradation (ERAD) Molecular chaperones
下载PDF
Roles of mitochondrial unfolded protein response in mammalian stem cells 被引量:3
7
作者 Li-Fang Gu Jia-Qi Chen +1 位作者 Qing-Yin Lin Yan-Zhou Yang 《World Journal of Stem Cells》 SCIE 2021年第7期737-752,共16页
The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is t... The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis. 展开更多
关键词 Mitochondrial unfolded protein response MAMMALS Stem cells CANCER
下载PDF
A truncated protein product of the germline variant of the DUOX2 gene leads to adenomatous polyposis 被引量:2
8
作者 Mengyuan Yang Yingxin Zhao +4 位作者 Yuwei Ding Juan Wang Yinuo Tan Dong Xu Ying Yuan 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第1期215-226,共12页
Objective:In some patients with adenomatous polyposis,an identifiable pathogenic variant of known associated genes cannot be found.Researchers have studied this for decades;however,few new genes have been identified.M... Objective:In some patients with adenomatous polyposis,an identifiable pathogenic variant of known associated genes cannot be found.Researchers have studied this for decades;however,few new genes have been identified.Methods:Adenomatous polyposis coli(APC)negative polyposis patients were identified through next-generation sequencing and multiplex ligation-dependent probe amplification.Then,whole-exome sequencing(WES)was used to determine candidate genes harboring pathogenic variants.Functional experiments were performed to explore their effects.Subsequently,using Sanger sequencing,we found other polyposis patients carrying variants of the DUOX2 gene,encoding dual oxidase 2,and analyzed them.Results:From 88 patients with suspected familial adenomatous polyposis,25 unrelated APC negative polyposis patients were identified.Based on the WES results of 3 patients and 2 healthy relatives from a family,the germline nonsense variant(c.1588 A>T;p.K530 X)of the DUOX2 gene was speculated to play a decisive role in the pedigree in relation to adenomatous polyposis.During functional experiments,we observed that the truncated protein,h Duox2 K530,was overexpressed in the adenoma in a carrier of the DUOX2 nonsense variant,causing abnormal cell proliferation through endoplasmic reticulum(ER)retention.In addition,we found two unrelated APC negative patients carrying DUOX2 missense variants(c.3329 G>A,p.R1110 Q;c.4027 C>T,p.L1343 F).Given the results of the in silico analysis,these two missense variants might exert a negative influence on the function of h Duox2.Conclusions:To our knowledge,this is the first study that reports the possible association of DUOX2 germline variants with adenomatous polyposis.With an autosomal dominant inheritance,it causes ER retention,inducing an unfolded protein response. 展开更多
关键词 Adenomatous polyposis DUOX2 whole-exome sequencing endoplasmic reticulum retention unfolded protein response
下载PDF
The unfolded protein response signaling and retinal Müller cell metabolism 被引量:2
9
作者 Kristen Kelly Joshua J.Wang Sarah X.Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期1861-1870,共10页
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal ... The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism. 展开更多
关键词 unfolded protein response RETINA Müller glia metabolism NEURODEGENERATION X-box binding protein 1 glycolysis glucose transporter
下载PDF
Reactive oxygen species-induced activation of Yes-associated protein-1 through the c-Myc pathway is a therapeutic target in hepatocellular carcinoma 被引量:1
10
作者 Yuri Cho Min Ji Park +4 位作者 Koeun Kim Sun Woong Kim Wonjin Kim Sooyeon Oh Joo Ho Lee 《World Journal of Gastroenterology》 SCIE CAS 2020年第42期6599-6613,共15页
BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been prop... BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been proposed as one of the therapeutic targets in hepatocarcinogenesis.The levels of reactive oxygen species(ROS)increase during the progression from early to advanced hepatocellular carcinoma(HCC).AIM To study the activation of YAP-1 by ROS-induced damage in HCC and the involved signaling pathway.METHODS The expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761)was quantified using real-time polymerase chain reaction and immunoblotting.Human HCC cells were treated with H2O2,which is a major component of ROS in living organisms,and with either YAP-1 small interfering RNA(siRNA)or control siRNA.To investigate the role of YAP-1 in HCC cells under oxidative stress,MTS assays were performed.Immunoblotting was performed to evaluate the signaling pathway responsible for the activation of YAP-1.Eighty-eight surgically resected frozen HCC tissue samples and 88 nontumor liver tissue samples were used for gene expression analyses.RESULTS H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761).Suppression of YAP-1 using siRNA transfection resulted in a significant decrease in tumor proliferation during H2O2 treatment both in vitro and in vivo(both P<0.05).The oncogenic action of YAP-1 occurred via the activation of the c-Myc pathway,leading to the upregulation of components of the unfolded protein response(UPR),including 78-kDa glucoseregulated protein and activating transcription factor-6(ATF-6).The YAP-1 mRNA levels in human HCC tissues were upregulated by 2.6-fold compared with those in nontumor tissues(P<0.05)and were positively correlated with the ATF-6 Levels(Pearson’s coefficient=0.299;P<0.05).CONCLUSION This study shows a novel connection between YAP-1 and the UPR through the c-Myc pathway during oxidative stress in HCC.The ROS-induced activation of YAP-1 via the c-Myc pathway,which leads to the activation of the UPR pathway,might be a therapeutic target in HCC. 展开更多
关键词 Hepatocellular carcinoma Yes-associated protein-1 C-MYC Reactive oxygen species Unfolded protein response Activating transcription factor-6
下载PDF
Protein synthesis modulation as a therapeutic approach for amyotrophic lateral sclerosis and frontotemporal dementia 被引量:1
11
作者 Santiago E.Charif M.Florencia Vassallu +1 位作者 Lara Salvañal Lionel M.Igaz 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第7期1423-1430,共8页
Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that ar... Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding,accumulation,aggregation or mislocalization occur.Some of them(like the unfolded protein response)represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis(also known as proteostasis).This is even more important in neurons,as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age.Several neurodegenerative pathologies such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct,unbalanced protein overload.In amyotrophic lateral sclerosis and frontotemporal dementia,the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa(TDP-43).TDP-43 is an RNA binding protein that participates in RNA metabolism,among other functions.Dysregulation of TDP-43(e.g.aggregation and mislocalization)can dramatically affect neurons,and this has been linked to disease development.Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum.These variants can be causative of degeneration onset and progression.Most neurodegenerative diseases(including amyotrophic lateral sclerosis and frontotemporal dementia)have no cure at the moment;however,modulating translation has recently emerged as an attractive approach that can be performed at several steps(i.e.regulating activation of initiation and elongation factors,inhibiting unfolded protein response activation or inducing chaperone expression and activity).This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis.We strive to highlight the importance of research on drugs that,not only restore protein imbalance without compromising translational activity of cells,but are also as safe as possible for the patients. 展开更多
关键词 amyotrophic lateral sclerosis frontotemporal dementia NEURODEGENERATION neurodegenerative diseases protein imbalance protein synthesis modulation PROTEOSTASIS therapeutical compounds transactive response DNA-binding protein of 43 kDa TRANSLATION unfolded protein response
下载PDF
Hypoxia Affects Autophagy in Human Umbilical Vein Endothelial Cells via the IRE1 Unfolded Protein Response
12
作者 Zi-qi TAO Bao-zhu WEI +3 位作者 Min ZHAO Xin-xin ZHANG Ya ZHONG Jing WAN 《Current Medical Science》 SCIE CAS 2023年第4期689-695,共7页
Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical veno... Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical venous endothelial cells(HUVECs).Methods:The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting,qRT-PCR and confocal microscopy.Further,we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro.Finally,we examined the function of IRE1 in local blood vessels through animal models,Results:Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs.Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals.Conclusion:Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions. 展开更多
关键词 HYPOXIA AUTOPHAGY endoplasmic reticulum stress unfolded protein response IREl JNK
下载PDF
Secretion and expression dynamics of a GFP-tagged mucin-type fusion protein in high cell density Pichia pastoris bioreactor cultivations
13
作者 Magnus Sjoblom Linda Lindberg +1 位作者 Jan Holgersson Ulrika Rova 《Advances in Bioscience and Biotechnology》 2012年第3期238-248,共11页
The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in ... The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in 1 L scale bioreactors. The aim of the study was to understand how varying expression rates influenced the secretion dynamics of the fusion protein in terms of intracellular- and extracellular concentrations. Endoplasmic reticulum (ER) folding stress was assessed by the relative expression of the unfolded protein response controlled KAR2 gene. Three predefined methanol feeding models were applied to control the fusion protein synthesis rate. To track the fusion protein synthesis in a non-invasive manner and to follow its intracellular distribution, its C-terminal was linked to the green fluorescent protein. Under all conditions the fusion protein was found to partially accumulate intracellularly, where the major fraction was an insoluble, fluorescent full-sized protein. The high degree of glycosylation of the insoluble fusion protein indicated a secretory bottle-neck in the Golgi-system. This result was consistent with low ER folding stress as quantified by the relative expression of the KAR2 gene. Reduction of recombinant protein synthesis rate, by using lower feed rates of methanol, enhanced extracellular concentrations from 8 to 18 mg·L–1 and reduced the rate of intracellular accumulation. This clearly demonstrates the importance of tuning the synthesis rate with secretory bottle-necks to maintain secretion. 展开更多
关键词 GFP GFP-Fusion Green Fluorescent protein KAR2 Pichia pastoris SECRETION Unfolded protein Response YEAST
下载PDF
The Role and Mechanism of Unfolded Protein Response Pathway in Tumor Drug Resistance
14
作者 Yaqi Han Bingjuan Zhou +2 位作者 Haizhi Qiao Lingyan Wang Jinku Zhang 《Proceedings of Anticancer Research》 2023年第6期65-71,共7页
In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS... In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS).As a signal mechanism that mitigates ERS in eukaryotic cells,the unfolded protein response(UPR)pathway can activate cells and tissues,regulating pathological activities in various cells,and maintaining ER homeostasis.It forms the most crucial adaptive and defensive mechanism for cells.However,under the continuous influence of chemotherapy drugs,the quantity of unfolded proteins and erroneous proteins produced by tumor cells significantly increases,surpassing the normal regulatory range of UPR.Consequently,ERS fails to function properly,fostering tumor cell proliferation and the development of drug resistance.This review delves into the study of three UPR pathways(PERK,IRE1,and ATF6),elucidating the mechanisms of drug resistance and research progress in the signal transduction pathway of UPR related to cancers.It provides a profound understanding of the role and relationship between UPR and anti-tumor drugs,offering a new direction for effective clinical treatment. 展开更多
关键词 Unfolder protein response(UPR) Tumor resistance Activating transcription factor 6(ATF6) protein kinase RNA-like endoplasmic reticulum kinase(PERK) Inositol requiring enzyme 1(IRE1)
下载PDF
Mannogalactoglucan from mushrooms protects pancreatic islets via restoring UPR and promotes insulin secretion in TIDM mice
15
作者 Ting Liu Si Chen +7 位作者 Yunhe Qu Lujuan Zheng Xiaoxuan Yang Shuhan Men Yuanning Wang Hanrui Ma Yifa Zhou Yuying Fan 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1390-1401,共12页
Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan... Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM. 展开更多
关键词 Mannogalactoglucan MUSHROOM Pancreatic islets Insulin secretion Insulin synthesis Unfolded protein response(UPR) Type 1 diabetes mellitus(T1DM)
下载PDF
Knockdown of RCN1 contributes to the apoptosis of colorectal cancer via regulating IP3R1
16
作者 XUAN SHI YUFEN WANG +3 位作者 CHENYU LI WANGSHU FU XINYUE ZHANG AIXIA GONG 《BIOCELL》 SCIE 2024年第5期835-845,共11页
Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor invol... Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor involved in the development of CRC,we screened the upregulated genes in tumor tissues through four datasets from an online database.The expression of reticulocalbin 1(RCN1),a Ca2+-binding protein,was upregulated in the four datasets.Based on loss-offunction experiments,the effect of RCN1 on cell viability was assessed by Cell Counting Kit-8(CCK-8)assay.The regulatory effect of RCN1 on apoptosis was evaluated through Annexin V-fluorescein 5-isothiocyanate(FITC)/propidium iodide(PI)staining assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)assay in RKO and SW480 cells.Activation of endoplasmic reticulum(ER)stress signaling pathways was confirmed by estimating the phosphorylation and expression of PRKR-like ER kinase(PERK),inositol-requiring kinase-1(IRE1),transcription factor 6(ACT6),and CCAAT/enhancer-binding protein-homologous protein(CHOP).The intracellular Ca2+homeostasis regulated by RCN1 was determined through the detection of Ca2+concentration and mitochondrial membrane potential(MMP)measurement.Moreover,whether inositol 1,4,5-trisphosphate receptor type 1(IP3R1)was involved in the regulation of RCN1 in CRC was verified through the depletion of IP3R1 in RKO cells.Results:Knockdown of RCN1 reduced cell viability and facilitated apoptosis in RKO and SW480 cells.Phosphorylation of PERK and IRE1,activation of ATF6,and upregulation of CHOP were induced by the absence of RCN1,suggesting that the unfolded protein response(UPR)was activated in CRC cells.The concentration of Ca2+in mitochondria was increased after RCN1 depletion,followed by reduction in the MMP and release of cytochrome c from mitochondria to the cytoplasm in RKO and SW480 cells.Moreover,it was demonstrated that IP3R1 mediates the effect of RCN1 on apoptosis induced by ER stress in CRC cells.The downregulation of IP3R1 restored the RCN1 loss-induced apoptosis and the increased Ca2+concentration.Conclusion:Taken together,our results confirmed that silencing of RCN1 disrupted intracellular Ca2+homeostasis and promoted cell apoptosis caused by TG-induced ER stress by regulating IP3R1 and activating the UPR signaling pathways. 展开更多
关键词 Reticulocalbin 1 Unfolded protein response IP3R1 Colorectal cancer
下载PDF
Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease 被引量:40
17
作者 Xue-Qun Zhang Cheng-Fu Xu +2 位作者 Chao-Hui Yu Wei-Xing Chen You-Ming Li 《World Journal of Gastroenterology》 SCIE CAS 2014年第7期1768-1776,共9页
Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic ret... Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic reticulum(ER)stress response has recently been proposed to play a crucial role in both the development of steatosis and progression to nonalcoholic steatohepatitis.ER stress is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed due to the accumulation of unfolded or misfolded proteins.However,delayed or insufficient responses to ER stress may turn physiological mechanisms into pathological consequences,including fat accumulation,insulin resistance,inflammation,and apoptosis,all of which play important roles in the pathogenesis of NAFLD.Therefore,understanding the role of ER stress in the pathogenesis of NAFLD has become a topic of intense investigation.This review highlights the recent findings linking ER stress signaling pathways to the pathogenesis of NAFLD. 展开更多
关键词 Endoplasmic reticulum stress Unfolded protein response Nonalcoholic fatty liver disease Nonalcoholic steatohepatitis
下载PDF
N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes 被引量:10
18
作者 Yan-Li Ji Hua Wang Cheng Zhang Ying Zhang Mei Zhao Yuan-Hua Chen De-Xiang Xu 《Asian Journal of Andrology》 SCIE CAS CSCD 2013年第2期290-296,I0010,共8页
Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The ... Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg^-1). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ ceil apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2a (elF2a), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (.INK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes. 展开更多
关键词 antioxidant apoptosis cadmium endoplasmic reticulum stress N-acetylcysteine (NAC) TESTIS unfolded protein response
下载PDF
Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases 被引量:12
19
作者 so young kim yi yi kyaw jaehun cheong 《World Journal of Gastroenterology》 SCIE CAS 2017年第43期7657-7665,共9页
Hepatitis B virus(HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases,often leading to the pathogenesis of hepatocellular carcinoma(HCC). Although many studies for the roles of HBV... Hepatitis B virus(HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases,often leading to the pathogenesis of hepatocellular carcinoma(HCC). Although many studies for the roles of HBV on pathogenesis of the liver diseases,such as non-alcoholic fatty liver disease(NAFLD),hepatic inflammation,cirrhosis,and HCC,have been reported,the mechanisms are not fully understood. Endoplasmic reticulum(ER) and mitochondria have the protective mechanisms to restore their damaged function by intrinsic or extrinsic stresses,but their chronic dysfunctions are associated with the pathogenesis of the various diseases. Furthermore,HBV can affect intraor extracellular homeostasis through induction of ER and mitochondrial dysfunctions,leading to liver injury. Therefore,the mechanism by which HBV induces ER or mitochondrial stresses may be a therapeutic target for treatment of liver diseases. 展开更多
关键词 Liver disease Hepatitis B virus Hepatitis B virus X protein Endoplasmic reticulum stress Unfolded protein response
下载PDF
Inhibition of endoplasmic reticulum stress alleviates secondary injury after traumatic brain injury 被引量:9
20
作者 Hong-Ping Tan Qiang Guo +2 位作者 Gang Hua Jun-Xi Chen Jun-Chao Liang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期827-836,共10页
Apoptosis after traumatic brain injury has been shown to be a major factor influencing prognosis and outcome. Endoplasmic reticulum stress may be involved in mitochondrial mediated neuronal apoptosis. Therefore, endop... Apoptosis after traumatic brain injury has been shown to be a major factor influencing prognosis and outcome. Endoplasmic reticulum stress may be involved in mitochondrial mediated neuronal apoptosis. Therefore, endoplasmic reticulum stress has become an important mechanism of secondary injury after traumatic brain injury. In this study, a rat model of traumatic brain injury was established by lateral fluid percussion injury. Fluorescence assays were used to measure reactive oxygen species content in the cerebral cortex. Western blot assays were used to determine expression of endoplasmic reticulum stress-related proteins. Hematoxylin-eosin staining was used to detect pathological changes in the cerebral cortex. Transmission electron microscopy was used to measure ultrastructural changes in the endoplasmic reticulum and mitochondria. Our results showed activation of the endoplasmic reticulum stress-related unfolded protein response. Meanwhile, both the endoplasmic reticulum stress response and mitochondrial apoptotic pathway were activated at different stages post-traumatic brain injury. Furthermore, pretreatment with the endoplasmic reticulum stress inhibitor, salubrinal(1 mg/kg), by intraperitoneal injection 30 minutes before injury significantly inhibited the endoplasmic reticulum stress response and reduced apoptosis. Moreover, salubrinal promoted recovery of mitochondrial function and inhibited activation of the mitochondrial apoptotic pathway post-traumatic brain injury. These results suggest that endoplasmic reticulum stress might be a key factor for secondary brain injury post-traumatic brain injury. 展开更多
关键词 nerve regeneration traumatic brain injury endoplasmic reticulum stress APOPTOSIS MITOCHONDRIA reactive oxygen species unfolded protein response secondary brain injury salubrinal neural regeneration
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部