The thermal behaviors of five proteins in hydrophobic interaction chromatography (HIC) were investigated in the temperature range from 0 to 50℃. The thermodynamic parameters (△H°,△S°, △Cp°and △G...The thermal behaviors of five proteins in hydrophobic interaction chromatography (HIC) were investigated in the temperature range from 0 to 50℃. The thermodynamic parameters (△H°,△S°, △Cp°and △G°) of these proteins in the process of retention and unfolding were determined. The existence of enthalpy and entropy convergence with temperature was confirmed. The differences of the isoentropic and isoenthalpic temperatures for protein unfolding in HIC system from the traditional solution were elucidated.展开更多
Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have m...Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics.展开更多
The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo...The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.展开更多
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re...Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
The research progress in molecular chaperones, unfolded protein response (UPR) and ER-associated degradation (ERAD) involved in the protein quality control was summarized in this paper, and then the existing probl...The research progress in molecular chaperones, unfolded protein response (UPR) and ER-associated degradation (ERAD) involved in the protein quality control was summarized in this paper, and then the existing problems and the future devel- opment prospect were also discussed. It was pointed out that the life process of protein experienced four stages including synthesizing, folding, assembling and degradation, while each stage required strict quality control. In endoplasmic reticulum (ER), a variety of proteins had been synthesized, folded and modified to form func- tional proteins with certain conformation. When the folding was blocked in ER, the unfolded proteins would aggregate and induce the UPR, which up-regulated the level of modification enzymes folded by a series of molecular chaperones and proteins to help them accomplish folding and assembling. If these proteins were still folded incorrectly, they would enter into ERAD for being degraded.展开更多
The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is t...The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.展开更多
Objective:In some patients with adenomatous polyposis,an identifiable pathogenic variant of known associated genes cannot be found.Researchers have studied this for decades;however,few new genes have been identified.M...Objective:In some patients with adenomatous polyposis,an identifiable pathogenic variant of known associated genes cannot be found.Researchers have studied this for decades;however,few new genes have been identified.Methods:Adenomatous polyposis coli(APC)negative polyposis patients were identified through next-generation sequencing and multiplex ligation-dependent probe amplification.Then,whole-exome sequencing(WES)was used to determine candidate genes harboring pathogenic variants.Functional experiments were performed to explore their effects.Subsequently,using Sanger sequencing,we found other polyposis patients carrying variants of the DUOX2 gene,encoding dual oxidase 2,and analyzed them.Results:From 88 patients with suspected familial adenomatous polyposis,25 unrelated APC negative polyposis patients were identified.Based on the WES results of 3 patients and 2 healthy relatives from a family,the germline nonsense variant(c.1588 A>T;p.K530 X)of the DUOX2 gene was speculated to play a decisive role in the pedigree in relation to adenomatous polyposis.During functional experiments,we observed that the truncated protein,h Duox2 K530,was overexpressed in the adenoma in a carrier of the DUOX2 nonsense variant,causing abnormal cell proliferation through endoplasmic reticulum(ER)retention.In addition,we found two unrelated APC negative patients carrying DUOX2 missense variants(c.3329 G>A,p.R1110 Q;c.4027 C>T,p.L1343 F).Given the results of the in silico analysis,these two missense variants might exert a negative influence on the function of h Duox2.Conclusions:To our knowledge,this is the first study that reports the possible association of DUOX2 germline variants with adenomatous polyposis.With an autosomal dominant inheritance,it causes ER retention,inducing an unfolded protein response.展开更多
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal ...The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.展开更多
BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been prop...BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been proposed as one of the therapeutic targets in hepatocarcinogenesis.The levels of reactive oxygen species(ROS)increase during the progression from early to advanced hepatocellular carcinoma(HCC).AIM To study the activation of YAP-1 by ROS-induced damage in HCC and the involved signaling pathway.METHODS The expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761)was quantified using real-time polymerase chain reaction and immunoblotting.Human HCC cells were treated with H2O2,which is a major component of ROS in living organisms,and with either YAP-1 small interfering RNA(siRNA)or control siRNA.To investigate the role of YAP-1 in HCC cells under oxidative stress,MTS assays were performed.Immunoblotting was performed to evaluate the signaling pathway responsible for the activation of YAP-1.Eighty-eight surgically resected frozen HCC tissue samples and 88 nontumor liver tissue samples were used for gene expression analyses.RESULTS H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761).Suppression of YAP-1 using siRNA transfection resulted in a significant decrease in tumor proliferation during H2O2 treatment both in vitro and in vivo(both P<0.05).The oncogenic action of YAP-1 occurred via the activation of the c-Myc pathway,leading to the upregulation of components of the unfolded protein response(UPR),including 78-kDa glucoseregulated protein and activating transcription factor-6(ATF-6).The YAP-1 mRNA levels in human HCC tissues were upregulated by 2.6-fold compared with those in nontumor tissues(P<0.05)and were positively correlated with the ATF-6 Levels(Pearson’s coefficient=0.299;P<0.05).CONCLUSION This study shows a novel connection between YAP-1 and the UPR through the c-Myc pathway during oxidative stress in HCC.The ROS-induced activation of YAP-1 via the c-Myc pathway,which leads to the activation of the UPR pathway,might be a therapeutic target in HCC.展开更多
Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that ar...Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding,accumulation,aggregation or mislocalization occur.Some of them(like the unfolded protein response)represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis(also known as proteostasis).This is even more important in neurons,as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age.Several neurodegenerative pathologies such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct,unbalanced protein overload.In amyotrophic lateral sclerosis and frontotemporal dementia,the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa(TDP-43).TDP-43 is an RNA binding protein that participates in RNA metabolism,among other functions.Dysregulation of TDP-43(e.g.aggregation and mislocalization)can dramatically affect neurons,and this has been linked to disease development.Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum.These variants can be causative of degeneration onset and progression.Most neurodegenerative diseases(including amyotrophic lateral sclerosis and frontotemporal dementia)have no cure at the moment;however,modulating translation has recently emerged as an attractive approach that can be performed at several steps(i.e.regulating activation of initiation and elongation factors,inhibiting unfolded protein response activation or inducing chaperone expression and activity).This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis.We strive to highlight the importance of research on drugs that,not only restore protein imbalance without compromising translational activity of cells,but are also as safe as possible for the patients.展开更多
Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical veno...Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical venous endothelial cells(HUVECs).Methods:The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting,qRT-PCR and confocal microscopy.Further,we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro.Finally,we examined the function of IRE1 in local blood vessels through animal models,Results:Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs.Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals.Conclusion:Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions.展开更多
The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in ...The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in 1 L scale bioreactors. The aim of the study was to understand how varying expression rates influenced the secretion dynamics of the fusion protein in terms of intracellular- and extracellular concentrations. Endoplasmic reticulum (ER) folding stress was assessed by the relative expression of the unfolded protein response controlled KAR2 gene. Three predefined methanol feeding models were applied to control the fusion protein synthesis rate. To track the fusion protein synthesis in a non-invasive manner and to follow its intracellular distribution, its C-terminal was linked to the green fluorescent protein. Under all conditions the fusion protein was found to partially accumulate intracellularly, where the major fraction was an insoluble, fluorescent full-sized protein. The high degree of glycosylation of the insoluble fusion protein indicated a secretory bottle-neck in the Golgi-system. This result was consistent with low ER folding stress as quantified by the relative expression of the KAR2 gene. Reduction of recombinant protein synthesis rate, by using lower feed rates of methanol, enhanced extracellular concentrations from 8 to 18 mg·L–1 and reduced the rate of intracellular accumulation. This clearly demonstrates the importance of tuning the synthesis rate with secretory bottle-necks to maintain secretion.展开更多
In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS...In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS).As a signal mechanism that mitigates ERS in eukaryotic cells,the unfolded protein response(UPR)pathway can activate cells and tissues,regulating pathological activities in various cells,and maintaining ER homeostasis.It forms the most crucial adaptive and defensive mechanism for cells.However,under the continuous influence of chemotherapy drugs,the quantity of unfolded proteins and erroneous proteins produced by tumor cells significantly increases,surpassing the normal regulatory range of UPR.Consequently,ERS fails to function properly,fostering tumor cell proliferation and the development of drug resistance.This review delves into the study of three UPR pathways(PERK,IRE1,and ATF6),elucidating the mechanisms of drug resistance and research progress in the signal transduction pathway of UPR related to cancers.It provides a profound understanding of the role and relationship between UPR and anti-tumor drugs,offering a new direction for effective clinical treatment.展开更多
Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan...Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM.展开更多
Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor invol...Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor involved in the development of CRC,we screened the upregulated genes in tumor tissues through four datasets from an online database.The expression of reticulocalbin 1(RCN1),a Ca2+-binding protein,was upregulated in the four datasets.Based on loss-offunction experiments,the effect of RCN1 on cell viability was assessed by Cell Counting Kit-8(CCK-8)assay.The regulatory effect of RCN1 on apoptosis was evaluated through Annexin V-fluorescein 5-isothiocyanate(FITC)/propidium iodide(PI)staining assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)assay in RKO and SW480 cells.Activation of endoplasmic reticulum(ER)stress signaling pathways was confirmed by estimating the phosphorylation and expression of PRKR-like ER kinase(PERK),inositol-requiring kinase-1(IRE1),transcription factor 6(ACT6),and CCAAT/enhancer-binding protein-homologous protein(CHOP).The intracellular Ca2+homeostasis regulated by RCN1 was determined through the detection of Ca2+concentration and mitochondrial membrane potential(MMP)measurement.Moreover,whether inositol 1,4,5-trisphosphate receptor type 1(IP3R1)was involved in the regulation of RCN1 in CRC was verified through the depletion of IP3R1 in RKO cells.Results:Knockdown of RCN1 reduced cell viability and facilitated apoptosis in RKO and SW480 cells.Phosphorylation of PERK and IRE1,activation of ATF6,and upregulation of CHOP were induced by the absence of RCN1,suggesting that the unfolded protein response(UPR)was activated in CRC cells.The concentration of Ca2+in mitochondria was increased after RCN1 depletion,followed by reduction in the MMP and release of cytochrome c from mitochondria to the cytoplasm in RKO and SW480 cells.Moreover,it was demonstrated that IP3R1 mediates the effect of RCN1 on apoptosis induced by ER stress in CRC cells.The downregulation of IP3R1 restored the RCN1 loss-induced apoptosis and the increased Ca2+concentration.Conclusion:Taken together,our results confirmed that silencing of RCN1 disrupted intracellular Ca2+homeostasis and promoted cell apoptosis caused by TG-induced ER stress by regulating IP3R1 and activating the UPR signaling pathways.展开更多
Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic ret...Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic reticulum(ER)stress response has recently been proposed to play a crucial role in both the development of steatosis and progression to nonalcoholic steatohepatitis.ER stress is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed due to the accumulation of unfolded or misfolded proteins.However,delayed or insufficient responses to ER stress may turn physiological mechanisms into pathological consequences,including fat accumulation,insulin resistance,inflammation,and apoptosis,all of which play important roles in the pathogenesis of NAFLD.Therefore,understanding the role of ER stress in the pathogenesis of NAFLD has become a topic of intense investigation.This review highlights the recent findings linking ER stress signaling pathways to the pathogenesis of NAFLD.展开更多
Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The ...Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg^-1). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ ceil apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2a (elF2a), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (.INK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.展开更多
Hepatitis B virus(HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases,often leading to the pathogenesis of hepatocellular carcinoma(HCC). Although many studies for the roles of HBV...Hepatitis B virus(HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases,often leading to the pathogenesis of hepatocellular carcinoma(HCC). Although many studies for the roles of HBV on pathogenesis of the liver diseases,such as non-alcoholic fatty liver disease(NAFLD),hepatic inflammation,cirrhosis,and HCC,have been reported,the mechanisms are not fully understood. Endoplasmic reticulum(ER) and mitochondria have the protective mechanisms to restore their damaged function by intrinsic or extrinsic stresses,but their chronic dysfunctions are associated with the pathogenesis of the various diseases. Furthermore,HBV can affect intraor extracellular homeostasis through induction of ER and mitochondrial dysfunctions,leading to liver injury. Therefore,the mechanism by which HBV induces ER or mitochondrial stresses may be a therapeutic target for treatment of liver diseases.展开更多
Apoptosis after traumatic brain injury has been shown to be a major factor influencing prognosis and outcome. Endoplasmic reticulum stress may be involved in mitochondrial mediated neuronal apoptosis. Therefore, endop...Apoptosis after traumatic brain injury has been shown to be a major factor influencing prognosis and outcome. Endoplasmic reticulum stress may be involved in mitochondrial mediated neuronal apoptosis. Therefore, endoplasmic reticulum stress has become an important mechanism of secondary injury after traumatic brain injury. In this study, a rat model of traumatic brain injury was established by lateral fluid percussion injury. Fluorescence assays were used to measure reactive oxygen species content in the cerebral cortex. Western blot assays were used to determine expression of endoplasmic reticulum stress-related proteins. Hematoxylin-eosin staining was used to detect pathological changes in the cerebral cortex. Transmission electron microscopy was used to measure ultrastructural changes in the endoplasmic reticulum and mitochondria. Our results showed activation of the endoplasmic reticulum stress-related unfolded protein response. Meanwhile, both the endoplasmic reticulum stress response and mitochondrial apoptotic pathway were activated at different stages post-traumatic brain injury. Furthermore, pretreatment with the endoplasmic reticulum stress inhibitor, salubrinal(1 mg/kg), by intraperitoneal injection 30 minutes before injury significantly inhibited the endoplasmic reticulum stress response and reduced apoptosis. Moreover, salubrinal promoted recovery of mitochondrial function and inhibited activation of the mitochondrial apoptotic pathway post-traumatic brain injury. These results suggest that endoplasmic reticulum stress might be a key factor for secondary brain injury post-traumatic brain injury.展开更多
文摘The thermal behaviors of five proteins in hydrophobic interaction chromatography (HIC) were investigated in the temperature range from 0 to 50℃. The thermodynamic parameters (△H°,△S°, △Cp°and △G°) of these proteins in the process of retention and unfolding were determined. The existence of enthalpy and entropy convergence with temperature was confirmed. The differences of the isoentropic and isoenthalpic temperatures for protein unfolding in HIC system from the traditional solution were elucidated.
基金the National Natural Science Foundation of China(Grant Nos.11874309 and 11474237)the 111 Project(Grant No.B16029)。
文摘Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics.
基金supported by grants from the National Institutes of Health,No.NS105689(to WL)the Department of Defense through the Multiple Sclerosis Research Program,No.W81XWH-22-1-0757(to WL).
文摘The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.
文摘Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
基金Supported by National Natural Science Foundation of China (Grant No.30840002,30970223)Science Foundation for Returned Chinese Scholars in Heilongjiang (Grant No.LC08C03)+3 种基金Specialized Fund for Basic Scientific Research in Higher Education Institutions of China (Grant No.DL09DA02)Scientific Research Starting Foundation for Introduced Talents in Northeast Forestry University (Grant No.015-602042)National Science Foundation for Post-doctoral Scientists of China (Grant No.200902365)Preferred Foundation of Science-Technology Program for Returned Chinese Scholars in Heilongjiang (Grant No.2009-HLJLixinLi)~~
文摘The research progress in molecular chaperones, unfolded protein response (UPR) and ER-associated degradation (ERAD) involved in the protein quality control was summarized in this paper, and then the existing problems and the future devel- opment prospect were also discussed. It was pointed out that the life process of protein experienced four stages including synthesizing, folding, assembling and degradation, while each stage required strict quality control. In endoplasmic reticulum (ER), a variety of proteins had been synthesized, folded and modified to form func- tional proteins with certain conformation. When the folding was blocked in ER, the unfolded proteins would aggregate and induce the UPR, which up-regulated the level of modification enzymes folded by a series of molecular chaperones and proteins to help them accomplish folding and assembling. If these proteins were still folded incorrectly, they would enter into ERAD for being degraded.
基金Supported by the Key Projects of Natural Science Foundation of Ningxia,No.2020AAC02020the Funds of Ningxia Medical University,No.XY201808.
文摘The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0908200)the National Natural Science Foundation of China(Grant Nos.81872481 and 81902956)。
文摘Objective:In some patients with adenomatous polyposis,an identifiable pathogenic variant of known associated genes cannot be found.Researchers have studied this for decades;however,few new genes have been identified.Methods:Adenomatous polyposis coli(APC)negative polyposis patients were identified through next-generation sequencing and multiplex ligation-dependent probe amplification.Then,whole-exome sequencing(WES)was used to determine candidate genes harboring pathogenic variants.Functional experiments were performed to explore their effects.Subsequently,using Sanger sequencing,we found other polyposis patients carrying variants of the DUOX2 gene,encoding dual oxidase 2,and analyzed them.Results:From 88 patients with suspected familial adenomatous polyposis,25 unrelated APC negative polyposis patients were identified.Based on the WES results of 3 patients and 2 healthy relatives from a family,the germline nonsense variant(c.1588 A>T;p.K530 X)of the DUOX2 gene was speculated to play a decisive role in the pedigree in relation to adenomatous polyposis.During functional experiments,we observed that the truncated protein,h Duox2 K530,was overexpressed in the adenoma in a carrier of the DUOX2 nonsense variant,causing abnormal cell proliferation through endoplasmic reticulum(ER)retention.In addition,we found two unrelated APC negative patients carrying DUOX2 missense variants(c.3329 G>A,p.R1110 Q;c.4027 C>T,p.L1343 F).Given the results of the in silico analysis,these two missense variants might exert a negative influence on the function of h Duox2.Conclusions:To our knowledge,this is the first study that reports the possible association of DUOX2 germline variants with adenomatous polyposis.With an autosomal dominant inheritance,it causes ER retention,inducing an unfolded protein response.
基金supported,in part,by NIH/NEI grants EY019949 and EY025061an Unrestricted Grant to the Department of Ophthalmology,SUNY-Buffalo,from Research to Prevent Blindness
文摘The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.
文摘BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1(YAP-1).Dysregulation in Hippo pathway has been proposed as one of the therapeutic targets in hepatocarcinogenesis.The levels of reactive oxygen species(ROS)increase during the progression from early to advanced hepatocellular carcinoma(HCC).AIM To study the activation of YAP-1 by ROS-induced damage in HCC and the involved signaling pathway.METHODS The expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761)was quantified using real-time polymerase chain reaction and immunoblotting.Human HCC cells were treated with H2O2,which is a major component of ROS in living organisms,and with either YAP-1 small interfering RNA(siRNA)or control siRNA.To investigate the role of YAP-1 in HCC cells under oxidative stress,MTS assays were performed.Immunoblotting was performed to evaluate the signaling pathway responsible for the activation of YAP-1.Eighty-eight surgically resected frozen HCC tissue samples and 88 nontumor liver tissue samples were used for gene expression analyses.RESULTS H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells(Huh-7,HepG2,and SNU-761).Suppression of YAP-1 using siRNA transfection resulted in a significant decrease in tumor proliferation during H2O2 treatment both in vitro and in vivo(both P<0.05).The oncogenic action of YAP-1 occurred via the activation of the c-Myc pathway,leading to the upregulation of components of the unfolded protein response(UPR),including 78-kDa glucoseregulated protein and activating transcription factor-6(ATF-6).The YAP-1 mRNA levels in human HCC tissues were upregulated by 2.6-fold compared with those in nontumor tissues(P<0.05)and were positively correlated with the ATF-6 Levels(Pearson’s coefficient=0.299;P<0.05).CONCLUSION This study shows a novel connection between YAP-1 and the UPR through the c-Myc pathway during oxidative stress in HCC.The ROS-induced activation of YAP-1 via the c-Myc pathway,which leads to the activation of the UPR pathway,might be a therapeutic target in HCC.
基金supported by research grants to LMI from University of Buenos Aires(UBACyT)the Agencia Nacional de Promoción Científica y Tecnológica(ANPCyT)under grants PICT 2015-0975 and PICT 2017-2140。
文摘Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding,accumulation,aggregation or mislocalization occur.Some of them(like the unfolded protein response)represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis(also known as proteostasis).This is even more important in neurons,as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age.Several neurodegenerative pathologies such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct,unbalanced protein overload.In amyotrophic lateral sclerosis and frontotemporal dementia,the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa(TDP-43).TDP-43 is an RNA binding protein that participates in RNA metabolism,among other functions.Dysregulation of TDP-43(e.g.aggregation and mislocalization)can dramatically affect neurons,and this has been linked to disease development.Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum.These variants can be causative of degeneration onset and progression.Most neurodegenerative diseases(including amyotrophic lateral sclerosis and frontotemporal dementia)have no cure at the moment;however,modulating translation has recently emerged as an attractive approach that can be performed at several steps(i.e.regulating activation of initiation and elongation factors,inhibiting unfolded protein response activation or inducing chaperone expression and activity).This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis.We strive to highlight the importance of research on drugs that,not only restore protein imbalance without compromising translational activity of cells,but are also as safe as possible for the patients.
基金supported by the National Natural Science Foundation of China(No.81670409).
文摘Objective:The purpose of this study was to investigate the role of the unfolded protein response,specifically the inositol-requiring enzyme 1(IRE1)signaling pathway,in hypoxia-induced autophagy in human umbilical venous endothelial cells(HUVECs).Methods:The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting,qRT-PCR and confocal microscopy.Further,we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro.Finally,we examined the function of IRE1 in local blood vessels through animal models,Results:Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs.Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals.Conclusion:Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions.
基金This work was supported by the Research Council of NorrbottenIn-novationsbron and Langmanska foretagarfonden.J.H.was supported by the Swedish Research Council(No.K2011-65X-3031-01-6)the County Council of Vastra Gotaland(ALF).
文摘The methanol inducible alcohol oxidase 1 promoter and the Saccharomyces cerevisiae alpha-factor prepro secretion signal were used to drive expression and secretion of a mucin-type fusion protein by Pichia pastoris in 1 L scale bioreactors. The aim of the study was to understand how varying expression rates influenced the secretion dynamics of the fusion protein in terms of intracellular- and extracellular concentrations. Endoplasmic reticulum (ER) folding stress was assessed by the relative expression of the unfolded protein response controlled KAR2 gene. Three predefined methanol feeding models were applied to control the fusion protein synthesis rate. To track the fusion protein synthesis in a non-invasive manner and to follow its intracellular distribution, its C-terminal was linked to the green fluorescent protein. Under all conditions the fusion protein was found to partially accumulate intracellularly, where the major fraction was an insoluble, fluorescent full-sized protein. The high degree of glycosylation of the insoluble fusion protein indicated a secretory bottle-neck in the Golgi-system. This result was consistent with low ER folding stress as quantified by the relative expression of the KAR2 gene. Reduction of recombinant protein synthesis rate, by using lower feed rates of methanol, enhanced extracellular concentrations from 8 to 18 mg·L–1 and reduced the rate of intracellular accumulation. This clearly demonstrates the importance of tuning the synthesis rate with secretory bottle-necks to maintain secretion.
文摘In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS).As a signal mechanism that mitigates ERS in eukaryotic cells,the unfolded protein response(UPR)pathway can activate cells and tissues,regulating pathological activities in various cells,and maintaining ER homeostasis.It forms the most crucial adaptive and defensive mechanism for cells.However,under the continuous influence of chemotherapy drugs,the quantity of unfolded proteins and erroneous proteins produced by tumor cells significantly increases,surpassing the normal regulatory range of UPR.Consequently,ERS fails to function properly,fostering tumor cell proliferation and the development of drug resistance.This review delves into the study of three UPR pathways(PERK,IRE1,and ATF6),elucidating the mechanisms of drug resistance and research progress in the signal transduction pathway of UPR related to cancers.It provides a profound understanding of the role and relationship between UPR and anti-tumor drugs,offering a new direction for effective clinical treatment.
基金funded by the National Natural Science Foundation of China (32371341,31872674)the Scientific and Technologic Foundation of Jilin Province (20230202050NC)the Fundamental Research Funds for the Central Universities (CGZH202206)。
文摘Type 1 diabetes mellitus(T1DM) lacks insulin secretion due to autoimmune deficiency of pancreaticβ-cells.Protecting pancreatic islets and enhancing insulin secretion has been therapeutic approaches.Mannogalactoglucan is the main type of polysaccharide from natural mushroom,which has potential medicinal prospects.Nevertheless,the antidiabetic property of mannogalactoglucan in T1DM has not been fully elucidated.In this study,we obtained the neutral fraction of alkali-soluble Armillaria mellea polysaccharide(AAMP-N) with the structure of mannogalactoglucan from the fruiting body of A.mellea and investigated the potential therapeutic value of AAMP-N in T1DM.We demonstrated that AAMP-N lowered blood glucose and improved diabetes symptoms in T1DM mice.AAMP-N activated unfolded protein response(UPR) signaling pathway to maintain ER protein folding homeostasis and promote insulin secretion in vivo.Besides that,AAMP-N promoted insulin synthesis via upregulating the expression of transcription factors,increased Ca^(2+) signals to stimulate intracellular insulin secretory vesicle transport via activating calcium/calmodulin-dependent kinase Ⅱ(CamkⅡ) and cAMP/PKA signals,and enhanced insulin secretory vesicle fusion with the plasma membrane via vesicle-associated membrane protein 2(VAMP2).Collectively,these studies demonstrated that the therapeutic potential of AAMP-N on pancreatic islets function,indicating that mannogalactoglucan could be natural nutraceutical used for the treatment of T1DM.
文摘Background:The incidence of colorectal cancer(CRC)has been increasing in recent years.Thus,the discovery of factors that can assist in alleviating CRC is urgently warranted.Methods:To identify a potential factor involved in the development of CRC,we screened the upregulated genes in tumor tissues through four datasets from an online database.The expression of reticulocalbin 1(RCN1),a Ca2+-binding protein,was upregulated in the four datasets.Based on loss-offunction experiments,the effect of RCN1 on cell viability was assessed by Cell Counting Kit-8(CCK-8)assay.The regulatory effect of RCN1 on apoptosis was evaluated through Annexin V-fluorescein 5-isothiocyanate(FITC)/propidium iodide(PI)staining assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)assay in RKO and SW480 cells.Activation of endoplasmic reticulum(ER)stress signaling pathways was confirmed by estimating the phosphorylation and expression of PRKR-like ER kinase(PERK),inositol-requiring kinase-1(IRE1),transcription factor 6(ACT6),and CCAAT/enhancer-binding protein-homologous protein(CHOP).The intracellular Ca2+homeostasis regulated by RCN1 was determined through the detection of Ca2+concentration and mitochondrial membrane potential(MMP)measurement.Moreover,whether inositol 1,4,5-trisphosphate receptor type 1(IP3R1)was involved in the regulation of RCN1 in CRC was verified through the depletion of IP3R1 in RKO cells.Results:Knockdown of RCN1 reduced cell viability and facilitated apoptosis in RKO and SW480 cells.Phosphorylation of PERK and IRE1,activation of ATF6,and upregulation of CHOP were induced by the absence of RCN1,suggesting that the unfolded protein response(UPR)was activated in CRC cells.The concentration of Ca2+in mitochondria was increased after RCN1 depletion,followed by reduction in the MMP and release of cytochrome c from mitochondria to the cytoplasm in RKO and SW480 cells.Moreover,it was demonstrated that IP3R1 mediates the effect of RCN1 on apoptosis induced by ER stress in CRC cells.The downregulation of IP3R1 restored the RCN1 loss-induced apoptosis and the increased Ca2+concentration.Conclusion:Taken together,our results confirmed that silencing of RCN1 disrupted intracellular Ca2+homeostasis and promoted cell apoptosis caused by TG-induced ER stress by regulating IP3R1 and activating the UPR signaling pathways.
基金Supported by National Key Basic Research Development Program,No.2012CB524905National Science and Technology Support Plan Project,No.2012BAI06B04+4 种基金National Natural Science Foundation of China,No.30900677,No.81070315,No.81070366,No.81100278,No.81170378,No.81230012 and No.81270487Zhejiang Provincial Natural Science Foundation of China,No.Y2090463 and No.Y2110026International Science and Technology Cooperation Projects of Zhejiang Province,No.2013C24010Science Foundation of Health Bureau of Zhejiang Province,No.2009A070 and No.2012RCA026Specialized Research Fund for the Doctoral Program of Higher Education,No.20090101120110
文摘Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic reticulum(ER)stress response has recently been proposed to play a crucial role in both the development of steatosis and progression to nonalcoholic steatohepatitis.ER stress is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed due to the accumulation of unfolded or misfolded proteins.However,delayed or insufficient responses to ER stress may turn physiological mechanisms into pathological consequences,including fat accumulation,insulin resistance,inflammation,and apoptosis,all of which play important roles in the pathogenesis of NAFLD.Therefore,understanding the role of ER stress in the pathogenesis of NAFLD has become a topic of intense investigation.This review highlights the recent findings linking ER stress signaling pathways to the pathogenesis of NAFLD.
基金ACKNOWLEDGMENTS This project was supported by the National Natural Science Foundation of China (No. 31000664) and Grants for Scientific Research of BSKY (No. XJ201114) and the Program of Young Top-Notch Talents from Anhui Medical University.
文摘Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg^-1). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ ceil apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2a (elF2a), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (.INK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.
基金Supported by the National Research Foundation of South Korea,No.NRF-2009-0093195Basic Science Research Program through the NRF funded by the Ministry of Education,No.NRF-2013R1A1A2057634
文摘Hepatitis B virus(HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases,often leading to the pathogenesis of hepatocellular carcinoma(HCC). Although many studies for the roles of HBV on pathogenesis of the liver diseases,such as non-alcoholic fatty liver disease(NAFLD),hepatic inflammation,cirrhosis,and HCC,have been reported,the mechanisms are not fully understood. Endoplasmic reticulum(ER) and mitochondria have the protective mechanisms to restore their damaged function by intrinsic or extrinsic stresses,but their chronic dysfunctions are associated with the pathogenesis of the various diseases. Furthermore,HBV can affect intraor extracellular homeostasis through induction of ER and mitochondrial dysfunctions,leading to liver injury. Therefore,the mechanism by which HBV induces ER or mitochondrial stresses may be a therapeutic target for treatment of liver diseases.
文摘Apoptosis after traumatic brain injury has been shown to be a major factor influencing prognosis and outcome. Endoplasmic reticulum stress may be involved in mitochondrial mediated neuronal apoptosis. Therefore, endoplasmic reticulum stress has become an important mechanism of secondary injury after traumatic brain injury. In this study, a rat model of traumatic brain injury was established by lateral fluid percussion injury. Fluorescence assays were used to measure reactive oxygen species content in the cerebral cortex. Western blot assays were used to determine expression of endoplasmic reticulum stress-related proteins. Hematoxylin-eosin staining was used to detect pathological changes in the cerebral cortex. Transmission electron microscopy was used to measure ultrastructural changes in the endoplasmic reticulum and mitochondria. Our results showed activation of the endoplasmic reticulum stress-related unfolded protein response. Meanwhile, both the endoplasmic reticulum stress response and mitochondrial apoptotic pathway were activated at different stages post-traumatic brain injury. Furthermore, pretreatment with the endoplasmic reticulum stress inhibitor, salubrinal(1 mg/kg), by intraperitoneal injection 30 minutes before injury significantly inhibited the endoplasmic reticulum stress response and reduced apoptosis. Moreover, salubrinal promoted recovery of mitochondrial function and inhibited activation of the mitochondrial apoptotic pathway post-traumatic brain injury. These results suggest that endoplasmic reticulum stress might be a key factor for secondary brain injury post-traumatic brain injury.