Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein k...Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn’t participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6.展开更多
Background: The purpose of the present study is to investigate the expression levels of STAT3, pSTAT3, MMP-7 and VEGF in colorectal adenocarcinoma, and also to determine association with the clinico-pathological param...Background: The purpose of the present study is to investigate the expression levels of STAT3, pSTAT3, MMP-7 and VEGF in colorectal adenocarcinoma, and also to determine association with the clinico-pathological parameters and?co-expression of these genes. Methods: An immunohistochemical method was used to evaluate the expression of MMP-7 and VEGF genes in 93 archival tissues whereas STAT3 and pSTAT3 expression was determined in 75 cases. Results: Overexpression of STAT3 was detected in 26.7% (20/75), pSTAT3 in 13.4% (10/75), MMP-7 in 38.8% (36/93) and VEGF in 59.2% (55/93) of the colorectal carcinomas. STAT3, MMP-7 and VEGF immunopositivity were significantly correlated with poorly-differentiated tumors (P = 0.004;P = 0.03;P = 0.002, respectively) but not with other parameters. However, pSTAT3 immunostaining was not significantly associated with the clinico-pathological characteristics. Significant relationship was noted between overexpression of pSTAT3 and STAT3 (P < 0.001), pSTAT3 and VEGF (P = 0.044), pSTAT3 and MMP-7 (P = 0.003), and STAT3 and VEGF (P = 0.037) but marginal association was detected between STAT3 and MMP-7 (P = 0.057), and MMP-7 and VEGF (P = 0.052). Conclusion:?Our data suggest that expression of these genes?may have an important role in tumor dedifferentiation and?may be useful as indicators of biologic aggressiveness. Co-expression of the biomarkers by cancer cells?may have important implications in colorectal cancer biology and?could be useful biological markers of the malignant phenotype.展开更多
BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti...BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.展开更多
The nucleotide-binding domain,leucine-rich repeat,and pyrin domain-containing protein 3(NLRP3)inflammasome is a critical modulator in inflammatory disease.Activation and mutation of NLRP3 can cause severe inflammation...The nucleotide-binding domain,leucine-rich repeat,and pyrin domain-containing protein 3(NLRP3)inflammasome is a critical modulator in inflammatory disease.Activation and mutation of NLRP3 can cause severe inflammation in diseases such as chronic infantile neurologic cutaneous and articular syndrome,Muckle-Wells syndrome,and familial cold autoinflammatory syndrome 1.To date,a great effort has been made to decode the underlying mechanisms of NLRP3 activation.The priming and activation of NLRP3 drive the maturation and release of active interleukin(IL)-18 and IL-1βto cause inflammation and pyroptosis,which can significantly trigger many diseases including inflammatory diseases,immune disorders,metabolic diseases,and neurodegenerative diseases.The investigation of NLRP3 as a therapeutic target for disease treatment is a hot topic in both preclinical studies and clinical trials.Developing potent NLRP3 inhibitors and downstream IL-1 inhibitors attracts wide-spectrum attention in both research and pharmaceutical fields.In this minireview,we first updated the molecular mechanisms involved in NLRP3 inflammasome activation and the associated downstream signaling pathways.We then reviewed the molecular and cellular pathways of NLRP3 in many diseases,including obesity,diabetes,and other metabolic diseases.In addition,we briefly reviewed the roles of NLRP3 in cancer growth and relative immune checkpoint therapy.Finally,clinical trials with treatments targeting NLRP3 and its downstream signaling pathways were summarized.展开更多
BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.S...BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.展开更多
Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons,clinically marked by muscle atrophy and weakness.Although the clinical course is ...Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons,clinically marked by muscle atrophy and weakness.Although the clinical course is highly variable,the average time from the onset of symptoms to the need for respiratory support or death is 3-5 years.ALS is the most prevalent motor neuron disease in adults,occurring at a rate of 2 per 100,000 individuals and affecting 5.4 per 100,000 individuals overall.展开更多
BACKGROUND Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors,including diabetes,which results in an increased atherosclerotic burden,but the precise mechanisms for the occu...BACKGROUND Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors,including diabetes,which results in an increased atherosclerotic burden,but the precise mechanisms for the occurrence and development of diabetic atheroscerosis have not been fully elucidated.AIM To summarize the potential role of retinol binding protein 4(RBP4) in the pathogenesis of diabetic atheroscerosis,particularly in relation to the RBP4-Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3)signaling pathway.METHODS Male Wistar rats were randomly divided into three groups,including a control group(NC group),diabetic rat group(DM group),and diabetic atherosclerotic rat group(DA group).The contents of total cholesterol(TC), high-density lipoprotein cholesterol(HDL-c), triglycerides(TG), low-density lipoprotein cholesterol(LDLc), fasting insulin(FINS),fasting plasma glucose,and hemoglobin A1 c(HbA1 c)were measured.Moreover,the adipose and serum levels of RBP4,along with the expression levels of JAK2, phosphorylated JAK2(p-JAK2), STAT3,phosphorylated STAT3(p-STAT3), B-cell lymphoma-2(Bcl-2), and Cyclin D1 in aortic tissues were also measured.Besides,homeostasis model assessment of insulin resistance(HOMA-IR) and atherogenic indexes(AI) were calculated.RESULTS Compared with the NC and DM groups,the levels LDL-c,TG,TC,FINS,HOMAIR,RBP4,and AI were upregulated,whereas that of HDL-c was downregulated in the DA group(P <0.05);the mRNA levels of JAK2,STAT3,Cyclin D1,and Bcl-2 in the DA group were significantly increased compared with the NC group and the DM group;P-JAK2,p-JAK2/JAK2 ratio,p-STAT3,p-STAT3/STAT3 ratio,Cyclin D1,and Bcl-2 at protein levels were significantly upregulated in the DA group compared with the NC group and DM group.In addition,as shown by Pearson analysis,serum RBP4 had a positive correlation with TG,TC,LDL-c,FINS,HbA1 C,p-JAK2,p-STAT3,Bcl-2,Cyclin D1,AI,and HOMA-IR but a negative correlation with HDL-c.In addition,multivariable logistic regression analysis showed that serum RBP4,p-JAK2,p-STAT3,and LDL-c were predictors of the presence of diabetic atherosclerosis.CONCLUSION RBP4 could be involved in the initiation or progression of diabetic atherosclerosis by regulating the JAK2/STAT3 signaling pathway.展开更多
BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisi...In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.展开更多
Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo...Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.展开更多
Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the...Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the pepper industry by affecting the planting period,growth conditions,and disease susceptibility.The gene CaABI3/VP1-1 could improve pepper waterlogging tolerance.In order to explore the upstream regulatory mechanism of CaABI3/VP1-1,a high-quality standardized yeast hybrid library was successfully constructed for yeast one-,two-,and threehybrid screening using pepper‘ZHC2’as the experimental material,with a library recombinant efficiency of up to 100%.The length of inserted fragments varied from 650 to 5000 bp,the library titer was 5.18×10^(6)colony-forming units(CFU)·mL-1,and the library capacity was 1.04×10^(7)CFU of cDNA inserts.The recombinant bait plasmid was used to successfully identify 78 different proteins through the yeast one-hybrid system,including one transcription factor within the ethylene-responsive factor family and the other within the growth-regulating factor family.The interaction happened between LOC124895848 and CaABI3/VP1-1 promoter by point-to-point yeast one-hybrid experiment.The expression level of the 12 selected protein-coding genes was then evaluated by quantitative real-time polymerase chain reaction.Results indicated the protein coding genes showed different responses to waterlogging stress and that the activity of the CaABI3/VP1-1 promoter could be inhibited or activated by up-regulating or down-regulating gene expression,respectively.The identification of these proteins interacting with the promoter provides a new perspective for understanding the gene regulatory network of hot pepper operating under waterlogging stress and provides theoretical support for further analysis of the complex regulatory relationship between transcription factors and promoters.展开更多
AIM:To investigate the mechanisms involved in a possible modulator role of interleukin(IL) -6 signalling on CYR61-CTGF-NOV(CCN) 2/connective tissue growth factor(CTGF) expression in hepatocytes(PC) and to look for a r...AIM:To investigate the mechanisms involved in a possible modulator role of interleukin(IL) -6 signalling on CYR61-CTGF-NOV(CCN) 2/connective tissue growth factor(CTGF) expression in hepatocytes(PC) and to look for a relation between serum concentrations of these two parameters in patients with acute inflammation. METHODS:Expression of CCN2/CTGF,p-STAT3,p-Smad 3/1 and p-Smad2 was examined in primary freshly isolated rat or cryo-preserved human PC exposed to various stimuli by Western blotting,electrophoretic mobility shift assay(EMSA) ,reporter-gene-assays and reversetranscriptase polymerase chain reaction. RESULTS:IL-6 strongly down-regulated CCN2/CTGF protein and mRNA expression in PC,enhanceable by extracellular presence of the soluble IL-6 receptor gp80,and supported by an inverse relation between IL-6 and CCN2/CTGF concentrations in patients'sera.The inhi-bition of TGFβ1 driven CCN2/CTGF expression by IL-6 did not involve a modulation of Smad2(and Smad1/3) signalling.However,the STAT3 SH2 domain binding peptide,a selective inhibitor of STAT3 DNA binding activity,counteracted the inhibitory effect of IL-6 on CCN2/CTGF expression much more pronounced than pyrrolidine-dithiocarbamate,an inhibitor primarily of STAT3 phosphorylation.An EMSA confirmed STAT3 binding to the proposed proximal STAT binding site in the CCN2/CTGF promoter. CONCLUSION:CCN2/CTGF is identified as a hepatocellular negative acute phase protein which is downregulated by IL-6 via the STAT3 pathway through interaction on the DNA binding level.展开更多
Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mech...Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.展开更多
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ...Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induc- tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.展开更多
Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ...Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.展开更多
Emerging evidence suggested that zinc finger protein 831(ZNF831)was associated with immune activity and stem cell regulation in breast cancer.Whereas,the roles and molec-ular mechanisms of ZNF831 in oncogenesis remain...Emerging evidence suggested that zinc finger protein 831(ZNF831)was associated with immune activity and stem cell regulation in breast cancer.Whereas,the roles and molec-ular mechanisms of ZNF831 in oncogenesis remain unclear.ZNF831 expression was significantly diminished in breast cancer which was associated with promoter CpG methylation but not mu-tation.Ectopic over-expression of ZNF831 suppressed breast cancer cell proliferation and col-ony formation and promoted apoptosis in vitro,while knockdown of ZNF831 resulted in an opposite phenotype.Anti-proliferation effect of ZNF831 was verified in vivo.Bioinformatic analysis of public databases and transcriptome sequencing both showed that ZNF831 could enhance apoptosis through transcriptional regulation of the JAK/STAT pathway.ChiP and luciferase report assays demonstrated that ZNF831 could directly bind to one specific region of STAT3 promoter and induce the transcriptional inhibition of STAT3.As a result,the attenuation of STAT3 led to a restraint of the transcription of Bcl2 and thus accelerated the apoptotic progression.Augmentation of STAT3 diminished the apoptosis-promoting effect of ZNF831 in breast cancer cell lines.Furthermore,ZNF831 could ameliorate the anti-proliferation effect of capecitabine and gemcitabine in breast cancer cell lines.Our findings demonstrate for the first time that ZNF831 is a novel transcriptional suppressor through inhibiting the expression of STAT3/Bcl2 and promoting the apoptosis process in breast cancer,suggesting ZNF831 as a novel biomarker and potential therapeutic target for breast cancer patients.展开更多
Following the publication,concerns have been raised about a number of figures in this article.The transwell invasion assays shown in Fig.5C were strikingly similar to data appearing in different form in other articles...Following the publication,concerns have been raised about a number of figures in this article.The transwell invasion assays shown in Fig.5C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.The Editors-in-Chief therefore no longer have confidence in the integrity of the data in this article and decided to retract this article.展开更多
Objective To investigate the expression of cyclin-dependent kinase 8(CDK8)in esophageal squamous cell carcinoma(ESCC)and its effect on ESCC cells,and to explore its potential molecular mechanism.Methods The expression...Objective To investigate the expression of cyclin-dependent kinase 8(CDK8)in esophageal squamous cell carcinoma(ESCC)and its effect on ESCC cells,and to explore its potential molecular mechanism.Methods The expression level of CDK8 mRNA was analyzed using UALCAN database,and then the expression level of CDK8 protein in tumor tissues of ESCC patients was detected by immunohistochemistry(IHC).Esophageal cancer cell lines Kyse-30 and Kyse-150 were stably transfected with lentivirus to achieve knockdown and overexpression of CDK8.EdU proliferation assay,cell colony formation assay,cell cycle assay,cell scratch assay and invasion assay were used to explore the effect of CDK8 protein expression level on the phenotype of ESCC cells.Subsequently,the effect of CDK8 on the growth of esophageal cancer xenografts in vitro was observed by subcutaneous tumor formation assay in mice.Finally,the expression of proliferation and metastasis related proteins was detected by Western blot.Results CDK8 showed high transcription and protein expression levels in ESCC tissues compared with normal esophageal tissues.Knockdown of CDK8 expression significantly inhibited the proliferation,migration and invasion of ESCC cells.In addition,inhibition of CDK8 expression significantly affected the JAK2/STAT3 pathway and the expression of E-cadherin/N-cadherin,while overexpression of CDK8 reversed these effects.Inhibition of STAT3 pathway reversed the promoting effect of CDK8 overexpression on ESCC cell phenotype.Conclusion CDK8 is a cancer-promoting factor of ESCC,which mediates the phosphorylation of JAK2/STAT3 and epithelial-mesenchymal transition(EMT).展开更多
[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone ...[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.展开更多
Background:Renalfibrosis is an important process in the development of chronic kidney disease.Understanding the pathogenesis andfinding effective treatments for renalfibrosis is crucial.This study aims to investigate whe...Background:Renalfibrosis is an important process in the development of chronic kidney disease.Understanding the pathogenesis andfinding effective treatments for renalfibrosis is crucial.This study aims to investigate whether a newly discovered long non-coding RNA(lncRNA)called LOC103694972 could be a potential target for treatingfibrosis of NRK-49F cells.Methods:LncRNA Chip was used to identify differentially expressed lncRNAs between TGF-β1-induced NRK-49F cells and normal cells.The dual-luciferase assay confirmed the binding between miR-29c-3p and signal transducer and activator of transcription(STAT3),as well as between miR-29c-3p and lncRNA LOC103694972.Si-LOC103694972 and miR-29c-3p mimic were then transfected into TGF-β1-induced NRK-49F cells.Results:The study found that LOC103694972 was highly expressed in TGF-β1-induced NRK-49F cells.These cells exhibited increased cell length and activity compared to the control group.The expression levels of Collagen I,α-Smooth muscle actin(α-SMA),and tissue inhibitor of metalloproteinase(TIMP-1)were increased,while matrix Metalloproteinase 2(MMP2)and matrix Metalloproteinase 9(MMP9)expression was decreased.However,transfection with si-LOC103694972 and miR-29c-3p mimics restored cell morphology and reduced cell viability.This led to a decrease in the levels of Collagen I,α-SMA,and TIMP-1,as well as an increase in MMP2 and MMP9 expression.Additionally,TGF-β1-induced NRK-49F cells transfected with miR-29c-3p mimics activated the STAT3-Smad3/CTGF pathway.Conclusion:Based on thesefindings,lncRNA LOC103694972 shows promise as a target for treating renalfibrosis.It negatively regulates miR-29c-3p and activates the STAT3-Smad3/CTGF pathway.展开更多
基金This work was supported by the national natural Science Foundation of China (No. 39925019)
文摘Objective: To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn’t participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6.
文摘Background: The purpose of the present study is to investigate the expression levels of STAT3, pSTAT3, MMP-7 and VEGF in colorectal adenocarcinoma, and also to determine association with the clinico-pathological parameters and?co-expression of these genes. Methods: An immunohistochemical method was used to evaluate the expression of MMP-7 and VEGF genes in 93 archival tissues whereas STAT3 and pSTAT3 expression was determined in 75 cases. Results: Overexpression of STAT3 was detected in 26.7% (20/75), pSTAT3 in 13.4% (10/75), MMP-7 in 38.8% (36/93) and VEGF in 59.2% (55/93) of the colorectal carcinomas. STAT3, MMP-7 and VEGF immunopositivity were significantly correlated with poorly-differentiated tumors (P = 0.004;P = 0.03;P = 0.002, respectively) but not with other parameters. However, pSTAT3 immunostaining was not significantly associated with the clinico-pathological characteristics. Significant relationship was noted between overexpression of pSTAT3 and STAT3 (P < 0.001), pSTAT3 and VEGF (P = 0.044), pSTAT3 and MMP-7 (P = 0.003), and STAT3 and VEGF (P = 0.037) but marginal association was detected between STAT3 and MMP-7 (P = 0.057), and MMP-7 and VEGF (P = 0.052). Conclusion:?Our data suggest that expression of these genes?may have an important role in tumor dedifferentiation and?may be useful as indicators of biologic aggressiveness. Co-expression of the biomarkers by cancer cells?may have important implications in colorectal cancer biology and?could be useful biological markers of the malignant phenotype.
基金Natural Science Foundation of Anhui Province,No.2208085MH216Major Natural Science and Technology Project of Bengbu Medical College,No.2020byfy004Scientific Research Program of Anhui Provincial Health Commission,No.AHWJ2023BAc10028.
文摘BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
文摘The nucleotide-binding domain,leucine-rich repeat,and pyrin domain-containing protein 3(NLRP3)inflammasome is a critical modulator in inflammatory disease.Activation and mutation of NLRP3 can cause severe inflammation in diseases such as chronic infantile neurologic cutaneous and articular syndrome,Muckle-Wells syndrome,and familial cold autoinflammatory syndrome 1.To date,a great effort has been made to decode the underlying mechanisms of NLRP3 activation.The priming and activation of NLRP3 drive the maturation and release of active interleukin(IL)-18 and IL-1βto cause inflammation and pyroptosis,which can significantly trigger many diseases including inflammatory diseases,immune disorders,metabolic diseases,and neurodegenerative diseases.The investigation of NLRP3 as a therapeutic target for disease treatment is a hot topic in both preclinical studies and clinical trials.Developing potent NLRP3 inhibitors and downstream IL-1 inhibitors attracts wide-spectrum attention in both research and pharmaceutical fields.In this minireview,we first updated the molecular mechanisms involved in NLRP3 inflammasome activation and the associated downstream signaling pathways.We then reviewed the molecular and cellular pathways of NLRP3 in many diseases,including obesity,diabetes,and other metabolic diseases.In addition,we briefly reviewed the roles of NLRP3 in cancer growth and relative immune checkpoint therapy.Finally,clinical trials with treatments targeting NLRP3 and its downstream signaling pathways were summarized.
基金Supported by Natural Science Foundation of Guangdong Province,No.2022A1515012346.
文摘BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.
基金funded by Fondazione AriSLA ETS(Fondazione di ricerca per la SLA ETS),ReNicALS project to SAsupported by#NEXTGENERATIONEU(NGEU)and funded by the Ministry of University and Research(MUR),National Recovery and Resilience Plan(NRRP),project MNESYS(PE0000006)-A Multiscale Integrated Approach to the Study of the Nervous System in Health and Disease(DN.1553 October 11,2022)。
文摘Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons,clinically marked by muscle atrophy and weakness.Although the clinical course is highly variable,the average time from the onset of symptoms to the need for respiratory support or death is 3-5 years.ALS is the most prevalent motor neuron disease in adults,occurring at a rate of 2 per 100,000 individuals and affecting 5.4 per 100,000 individuals overall.
基金Supported by National Natural Science Foundation of China,No.81800713 and No.81971264The Project of Natural Science Foundation of Anhui Province,No.1808085QH292Fundamental Research Funds for the Central Universities,No.WK9110000041。
文摘BACKGROUND Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors,including diabetes,which results in an increased atherosclerotic burden,but the precise mechanisms for the occurrence and development of diabetic atheroscerosis have not been fully elucidated.AIM To summarize the potential role of retinol binding protein 4(RBP4) in the pathogenesis of diabetic atheroscerosis,particularly in relation to the RBP4-Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3)signaling pathway.METHODS Male Wistar rats were randomly divided into three groups,including a control group(NC group),diabetic rat group(DM group),and diabetic atherosclerotic rat group(DA group).The contents of total cholesterol(TC), high-density lipoprotein cholesterol(HDL-c), triglycerides(TG), low-density lipoprotein cholesterol(LDLc), fasting insulin(FINS),fasting plasma glucose,and hemoglobin A1 c(HbA1 c)were measured.Moreover,the adipose and serum levels of RBP4,along with the expression levels of JAK2, phosphorylated JAK2(p-JAK2), STAT3,phosphorylated STAT3(p-STAT3), B-cell lymphoma-2(Bcl-2), and Cyclin D1 in aortic tissues were also measured.Besides,homeostasis model assessment of insulin resistance(HOMA-IR) and atherogenic indexes(AI) were calculated.RESULTS Compared with the NC and DM groups,the levels LDL-c,TG,TC,FINS,HOMAIR,RBP4,and AI were upregulated,whereas that of HDL-c was downregulated in the DA group(P <0.05);the mRNA levels of JAK2,STAT3,Cyclin D1,and Bcl-2 in the DA group were significantly increased compared with the NC group and the DM group;P-JAK2,p-JAK2/JAK2 ratio,p-STAT3,p-STAT3/STAT3 ratio,Cyclin D1,and Bcl-2 at protein levels were significantly upregulated in the DA group compared with the NC group and DM group.In addition,as shown by Pearson analysis,serum RBP4 had a positive correlation with TG,TC,LDL-c,FINS,HbA1 C,p-JAK2,p-STAT3,Bcl-2,Cyclin D1,AI,and HOMA-IR but a negative correlation with HDL-c.In addition,multivariable logistic regression analysis showed that serum RBP4,p-JAK2,p-STAT3,and LDL-c were predictors of the presence of diabetic atherosclerosis.CONCLUSION RBP4 could be involved in the initiation or progression of diabetic atherosclerosis by regulating the JAK2/STAT3 signaling pathway.
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
文摘In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.
文摘Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.
基金funded by the National Natural Science Foundation of China(grant no.32260760)the Science and Technology Program of Guizhou Province(grant no.20201Z002)the Platform Construction Project of Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province(Qianjiaoji[2022]No.040).
文摘Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the pepper industry by affecting the planting period,growth conditions,and disease susceptibility.The gene CaABI3/VP1-1 could improve pepper waterlogging tolerance.In order to explore the upstream regulatory mechanism of CaABI3/VP1-1,a high-quality standardized yeast hybrid library was successfully constructed for yeast one-,two-,and threehybrid screening using pepper‘ZHC2’as the experimental material,with a library recombinant efficiency of up to 100%.The length of inserted fragments varied from 650 to 5000 bp,the library titer was 5.18×10^(6)colony-forming units(CFU)·mL-1,and the library capacity was 1.04×10^(7)CFU of cDNA inserts.The recombinant bait plasmid was used to successfully identify 78 different proteins through the yeast one-hybrid system,including one transcription factor within the ethylene-responsive factor family and the other within the growth-regulating factor family.The interaction happened between LOC124895848 and CaABI3/VP1-1 promoter by point-to-point yeast one-hybrid experiment.The expression level of the 12 selected protein-coding genes was then evaluated by quantitative real-time polymerase chain reaction.Results indicated the protein coding genes showed different responses to waterlogging stress and that the activity of the CaABI3/VP1-1 promoter could be inhibited or activated by up-regulating or down-regulating gene expression,respectively.The identification of these proteins interacting with the promoter provides a new perspective for understanding the gene regulatory network of hot pepper operating under waterlogging stress and provides theoretical support for further analysis of the complex regulatory relationship between transcription factors and promoters.
文摘AIM:To investigate the mechanisms involved in a possible modulator role of interleukin(IL) -6 signalling on CYR61-CTGF-NOV(CCN) 2/connective tissue growth factor(CTGF) expression in hepatocytes(PC) and to look for a relation between serum concentrations of these two parameters in patients with acute inflammation. METHODS:Expression of CCN2/CTGF,p-STAT3,p-Smad 3/1 and p-Smad2 was examined in primary freshly isolated rat or cryo-preserved human PC exposed to various stimuli by Western blotting,electrophoretic mobility shift assay(EMSA) ,reporter-gene-assays and reversetranscriptase polymerase chain reaction. RESULTS:IL-6 strongly down-regulated CCN2/CTGF protein and mRNA expression in PC,enhanceable by extracellular presence of the soluble IL-6 receptor gp80,and supported by an inverse relation between IL-6 and CCN2/CTGF concentrations in patients'sera.The inhi-bition of TGFβ1 driven CCN2/CTGF expression by IL-6 did not involve a modulation of Smad2(and Smad1/3) signalling.However,the STAT3 SH2 domain binding peptide,a selective inhibitor of STAT3 DNA binding activity,counteracted the inhibitory effect of IL-6 on CCN2/CTGF expression much more pronounced than pyrrolidine-dithiocarbamate,an inhibitor primarily of STAT3 phosphorylation.An EMSA confirmed STAT3 binding to the proposed proximal STAT binding site in the CCN2/CTGF promoter. CONCLUSION:CCN2/CTGF is identified as a hepatocellular negative acute phase protein which is downregulated by IL-6 via the STAT3 pathway through interaction on the DNA binding level.
基金the National Natural Science Foundation of China (No. 30570627)
文摘Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.
基金supported by the National Natural Science Foundation of China, No. 30872609
文摘Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induc- tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.
基金supported by the National Natural Science Foundation of China(NSFC)(81973316,82173807)the China Postdoctoral Science Foundation(2020M681914)+1 种基金the Fund from Tianjin Municipal Health Commission(ZC200093)the Open Fund of Tianjin Central Hospital of Obstetrics and Gynecology/Tianjin Key Laboratory of human development and reproductive regulation(2021XHY01)。
文摘Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment.
基金supported by the National Natural Science Foundation of China(No.81472482,82173556)the Clinical Technology Innovation and Cultivation Project of the Army Medical University of China(No.CX2019LC120)the National Key Clinical Specialty Military Construction Project(China,No.425Z8).
文摘Emerging evidence suggested that zinc finger protein 831(ZNF831)was associated with immune activity and stem cell regulation in breast cancer.Whereas,the roles and molec-ular mechanisms of ZNF831 in oncogenesis remain unclear.ZNF831 expression was significantly diminished in breast cancer which was associated with promoter CpG methylation but not mu-tation.Ectopic over-expression of ZNF831 suppressed breast cancer cell proliferation and col-ony formation and promoted apoptosis in vitro,while knockdown of ZNF831 resulted in an opposite phenotype.Anti-proliferation effect of ZNF831 was verified in vivo.Bioinformatic analysis of public databases and transcriptome sequencing both showed that ZNF831 could enhance apoptosis through transcriptional regulation of the JAK/STAT pathway.ChiP and luciferase report assays demonstrated that ZNF831 could directly bind to one specific region of STAT3 promoter and induce the transcriptional inhibition of STAT3.As a result,the attenuation of STAT3 led to a restraint of the transcription of Bcl2 and thus accelerated the apoptotic progression.Augmentation of STAT3 diminished the apoptosis-promoting effect of ZNF831 in breast cancer cell lines.Furthermore,ZNF831 could ameliorate the anti-proliferation effect of capecitabine and gemcitabine in breast cancer cell lines.Our findings demonstrate for the first time that ZNF831 is a novel transcriptional suppressor through inhibiting the expression of STAT3/Bcl2 and promoting the apoptosis process in breast cancer,suggesting ZNF831 as a novel biomarker and potential therapeutic target for breast cancer patients.
文摘Following the publication,concerns have been raised about a number of figures in this article.The transwell invasion assays shown in Fig.5C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.The Editors-in-Chief therefore no longer have confidence in the integrity of the data in this article and decided to retract this article.
文摘Objective To investigate the expression of cyclin-dependent kinase 8(CDK8)in esophageal squamous cell carcinoma(ESCC)and its effect on ESCC cells,and to explore its potential molecular mechanism.Methods The expression level of CDK8 mRNA was analyzed using UALCAN database,and then the expression level of CDK8 protein in tumor tissues of ESCC patients was detected by immunohistochemistry(IHC).Esophageal cancer cell lines Kyse-30 and Kyse-150 were stably transfected with lentivirus to achieve knockdown and overexpression of CDK8.EdU proliferation assay,cell colony formation assay,cell cycle assay,cell scratch assay and invasion assay were used to explore the effect of CDK8 protein expression level on the phenotype of ESCC cells.Subsequently,the effect of CDK8 on the growth of esophageal cancer xenografts in vitro was observed by subcutaneous tumor formation assay in mice.Finally,the expression of proliferation and metastasis related proteins was detected by Western blot.Results CDK8 showed high transcription and protein expression levels in ESCC tissues compared with normal esophageal tissues.Knockdown of CDK8 expression significantly inhibited the proliferation,migration and invasion of ESCC cells.In addition,inhibition of CDK8 expression significantly affected the JAK2/STAT3 pathway and the expression of E-cadherin/N-cadherin,while overexpression of CDK8 reversed these effects.Inhibition of STAT3 pathway reversed the promoting effect of CDK8 overexpression on ESCC cell phenotype.Conclusion CDK8 is a cancer-promoting factor of ESCC,which mediates the phosphorylation of JAK2/STAT3 and epithelial-mesenchymal transition(EMT).
文摘[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.
基金This work was supported by the Hunan Provincial Education Department General Project Research Fund(No.20C1412)the Hunan Graduate Scientific Research Innovation Project(No.CX2018B474)the National Famous Elderly Chinese Medicine Experts Xinyu Chen Inheritance Workshop Construction Project(No.[2022]75).
文摘Background:Renalfibrosis is an important process in the development of chronic kidney disease.Understanding the pathogenesis andfinding effective treatments for renalfibrosis is crucial.This study aims to investigate whether a newly discovered long non-coding RNA(lncRNA)called LOC103694972 could be a potential target for treatingfibrosis of NRK-49F cells.Methods:LncRNA Chip was used to identify differentially expressed lncRNAs between TGF-β1-induced NRK-49F cells and normal cells.The dual-luciferase assay confirmed the binding between miR-29c-3p and signal transducer and activator of transcription(STAT3),as well as between miR-29c-3p and lncRNA LOC103694972.Si-LOC103694972 and miR-29c-3p mimic were then transfected into TGF-β1-induced NRK-49F cells.Results:The study found that LOC103694972 was highly expressed in TGF-β1-induced NRK-49F cells.These cells exhibited increased cell length and activity compared to the control group.The expression levels of Collagen I,α-Smooth muscle actin(α-SMA),and tissue inhibitor of metalloproteinase(TIMP-1)were increased,while matrix Metalloproteinase 2(MMP2)and matrix Metalloproteinase 9(MMP9)expression was decreased.However,transfection with si-LOC103694972 and miR-29c-3p mimics restored cell morphology and reduced cell viability.This led to a decrease in the levels of Collagen I,α-SMA,and TIMP-1,as well as an increase in MMP2 and MMP9 expression.Additionally,TGF-β1-induced NRK-49F cells transfected with miR-29c-3p mimics activated the STAT3-Smad3/CTGF pathway.Conclusion:Based on thesefindings,lncRNA LOC103694972 shows promise as a target for treating renalfibrosis.It negatively regulates miR-29c-3p and activates the STAT3-Smad3/CTGF pathway.