Objective To identify whether Banxia Xiexin Decoction(BXD)alleviates cerebral glucose metabolism disorder by intestinal microbiota regulation in APP/PS1 mice.Methods Forty-five 3-month-old male APP/PS1 mice were divid...Objective To identify whether Banxia Xiexin Decoction(BXD)alleviates cerebral glucose metabolism disorder by intestinal microbiota regulation in APP/PS1 mice.Methods Forty-five 3-month-old male APP/PS1 mice were divided into 3 groups using a random number table(n=15 per group),including a model group(MG),a liraglutide group(LG)and a BXD group(BG).Fifteen 3-month-old male C57BL/6J wild-type mice were used as the control group(CG).Mice in the BG were administered BXD granules by gavage at a dose of 6 g/(kg·d)for 3 months,while mice in the LG were injected intraperitoneally once daily with Liraglutide Injection(25 nmol/kg)for 3 months.Firstly,liquid chromatography with tandem-mass spectrometry was used to analyze the active components of BXD granules and the medicated serum of BXD.Then,the cognitive deficits,Aβpathological change and synaptic plasticity markers,including synaptophysin(SYP)and postsynaptic density protein 95(PSD95),were measured in APP/PS1 mice.Brain glucose uptake was detected by micropositron emission tomography.Intestinal microbial constituents were detected by 16S rRNA sequencing.The levels of intestinal glucagon-like peptide 1(GLP-1)and cerebral GLP-1 receptor(GLP-1R),as well as the phosphoinositide-3-kinase/protein kinase B/glycogen synthase kinase-3β(PI3K/Akt/GSK3β)insulin signaling pathway were determined by immunohistochemical(IHC)staining and Western blot analysis,respectively.Results BXD ameliorated cognitive deficits and Aβpathological features(P<0.01).The expressions of SYP and PSD95 in the BG were higher than those in the MG(P<0.01).Brain glucose uptake in the BG was higher than that in the MG(P<0.01).The intestinal microbial composition in the BG was partially reversed.The levels of intestinal GLP-1 in the BG were higher than those in the MG(P<0.01).Compared with the MG,the expression levels of hippocampal GLP-1R,Akt,PI3K and p-PI3K in the BG were significantly increased(P<0.01),while the levels of GSK3βwere reduced(P<0.01).Conclusion BXD exhibited protective effects against Alzheimer’s disease by regulating the gut microbiota/GLP-1/GLP-1R,enhancing PI3K/Akt/GSK3βinsulin signaling pathway,and improving brain glucose metabolism.展开更多
Objective: To analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury. Metheds: Myocardial I/R injury model was constructed in mice by 30 min...Objective: To analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury. Metheds: Myocardial I/R injury model was constructed in mice by 30 min of coronary occlusion followed by 24 h of reperfusion and pretreated with salvianolate 30 min before I/R (SAL group). The SAL group was compared with SHAM (no I/R and no salvianolate), I/R (no salvianolate), and ischemia preconditioning (IPC) groups. Furthermore, an ERK1/2 inhibitor PD98059 (1 mg/kg), and a phosphatidylinositol-3-kinase (PI3-K) inhibitor, LY294002 (7.5 mg/kg), were administered intraperitoneal injection (i.p) for 30 min prior to salvianolate, followed by I/R surgery in LY and PD groups. By using a double staining method, the ratio of the infarct size (IS) to left ventricle (LV) and of risk region (RR) to LV were compared among the groups. Correlations between IS and RR were analyzed. Western-blot was used to detect the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation changes. Results: There were no significant differences between RR to LV ratio among the SHAM, I/R, IPC and SAL groups (P〉0.05). The SAL and IPC groups had IS of 26.1% ± 1.4% and 22.3% ±2.9% of RR, respectively, both of which were significantly smaller than the I/R group (38.5% ± 2.9% of RR, P〈0.05, P〈0.01, respectively). Moreover, the phosphorylation of ERK1/2 was increased in SAL group (P〈0.05), while AKT had no significant change. LY294002 further reduced IS, whereas the protective role of salvianolate could be attenuated by PD98059, which increased the IS. Additionally, the IS was not linearly related to the RR (r=0.23, 0.45, 0.62, 0.17, and 0.52 in the SHAM, I/R, SAL, LY and PD groups, respectively). Conclusion: Salvianolate could reduce myocardial I/R injury in mice in vivo, which involves an ERK1/2 pathway, but not a PI3-K signaling pathway.展开更多
基金Supported by the Special Fund for Basic Scientific Research Operating Fees of Central Universities(No.2019-BUCMXJKY018)。
文摘Objective To identify whether Banxia Xiexin Decoction(BXD)alleviates cerebral glucose metabolism disorder by intestinal microbiota regulation in APP/PS1 mice.Methods Forty-five 3-month-old male APP/PS1 mice were divided into 3 groups using a random number table(n=15 per group),including a model group(MG),a liraglutide group(LG)and a BXD group(BG).Fifteen 3-month-old male C57BL/6J wild-type mice were used as the control group(CG).Mice in the BG were administered BXD granules by gavage at a dose of 6 g/(kg·d)for 3 months,while mice in the LG were injected intraperitoneally once daily with Liraglutide Injection(25 nmol/kg)for 3 months.Firstly,liquid chromatography with tandem-mass spectrometry was used to analyze the active components of BXD granules and the medicated serum of BXD.Then,the cognitive deficits,Aβpathological change and synaptic plasticity markers,including synaptophysin(SYP)and postsynaptic density protein 95(PSD95),were measured in APP/PS1 mice.Brain glucose uptake was detected by micropositron emission tomography.Intestinal microbial constituents were detected by 16S rRNA sequencing.The levels of intestinal glucagon-like peptide 1(GLP-1)and cerebral GLP-1 receptor(GLP-1R),as well as the phosphoinositide-3-kinase/protein kinase B/glycogen synthase kinase-3β(PI3K/Akt/GSK3β)insulin signaling pathway were determined by immunohistochemical(IHC)staining and Western blot analysis,respectively.Results BXD ameliorated cognitive deficits and Aβpathological features(P<0.01).The expressions of SYP and PSD95 in the BG were higher than those in the MG(P<0.01).Brain glucose uptake in the BG was higher than that in the MG(P<0.01).The intestinal microbial composition in the BG was partially reversed.The levels of intestinal GLP-1 in the BG were higher than those in the MG(P<0.01).Compared with the MG,the expression levels of hippocampal GLP-1R,Akt,PI3K and p-PI3K in the BG were significantly increased(P<0.01),while the levels of GSK3βwere reduced(P<0.01).Conclusion BXD exhibited protective effects against Alzheimer’s disease by regulating the gut microbiota/GLP-1/GLP-1R,enhancing PI3K/Akt/GSK3βinsulin signaling pathway,and improving brain glucose metabolism.
基金Supported by National Natural Science Foundation of China(No.81473471 and No.81573708)Foundation of Guangdong Hospital of Chinese Medicine(No.YK2013B2N11,No.YN2014ZH01,and No.YN2014ZHR203)
文摘Objective: To analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury. Metheds: Myocardial I/R injury model was constructed in mice by 30 min of coronary occlusion followed by 24 h of reperfusion and pretreated with salvianolate 30 min before I/R (SAL group). The SAL group was compared with SHAM (no I/R and no salvianolate), I/R (no salvianolate), and ischemia preconditioning (IPC) groups. Furthermore, an ERK1/2 inhibitor PD98059 (1 mg/kg), and a phosphatidylinositol-3-kinase (PI3-K) inhibitor, LY294002 (7.5 mg/kg), were administered intraperitoneal injection (i.p) for 30 min prior to salvianolate, followed by I/R surgery in LY and PD groups. By using a double staining method, the ratio of the infarct size (IS) to left ventricle (LV) and of risk region (RR) to LV were compared among the groups. Correlations between IS and RR were analyzed. Western-blot was used to detect the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation changes. Results: There were no significant differences between RR to LV ratio among the SHAM, I/R, IPC and SAL groups (P〉0.05). The SAL and IPC groups had IS of 26.1% ± 1.4% and 22.3% ±2.9% of RR, respectively, both of which were significantly smaller than the I/R group (38.5% ± 2.9% of RR, P〈0.05, P〈0.01, respectively). Moreover, the phosphorylation of ERK1/2 was increased in SAL group (P〈0.05), while AKT had no significant change. LY294002 further reduced IS, whereas the protective role of salvianolate could be attenuated by PD98059, which increased the IS. Additionally, the IS was not linearly related to the RR (r=0.23, 0.45, 0.62, 0.17, and 0.52 in the SHAM, I/R, SAL, LY and PD groups, respectively). Conclusion: Salvianolate could reduce myocardial I/R injury in mice in vivo, which involves an ERK1/2 pathway, but not a PI3-K signaling pathway.