Summary: Under global cerebral ischemia, the effect of different brain temperature on cerebral ischemic injury was studied. Male Sprague-Dawley rats were divided into normothermic (37-38℃) ischemia, mild hypotherm...Summary: Under global cerebral ischemia, the effect of different brain temperature on cerebral ischemic injury was studied. Male Sprague-Dawley rats were divided into normothermic (37-38℃) ischemia, mild hypothermic (31 32℃) ischemia, hyperthermic (41-42℃) ischemia and sham-operated groups. Global cerebral ischemia was established using the Pulsinelli four-vessel occlusion model and brain temperature was maintained at defined level for 60 min after 20omin ischemia. The expression of c-fos protein and the levels of malondialdehyde (MDA) and lactate in brain regions were detected by immunochemistry and spectrophotometrical methods, respectively. C-fos positive neurons were found in the hippocampus and cerebral cortex after cerebral ischemia reperfusion. Mild hypothermia increased the expression of c-fos protein in both areas, whereas hyperthermia decreased the expression of c-los protein in the hippocampus at 24 h reperfusion, and the cerebral cortex at 48 h reperfusion when compared to normothermic conditions. In normothermic, mild hypothermic and hyperthermic ischemia groups, the levels of MDA and lactate in brain tissue were increased at 24, 48 and 72 h reperfusion fol- lowing 20-min ischemia as compared with the sham-operated group (P〈0.01). The levels of MDA and lactate in mild hypothermic group were significantly lower than those in normothermic group (P〈0.01). It is suggested that brain temperature influences the translation of the immunoreactive protein product of c-fos after global cerebral ischemia, and MDA and lactate are also affected by hypothermia and hyperthermia.展开更多
The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocyte...The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium. The cardiomyocyte size was determined by phase contrast microscope, and the rate of protein synthesis was measured by [3H]-Leucine incorporation. The c-fos and c-jun mRNA expression in cardiomyocytes was detected by reverse transcription polymerase chain reaction (RT-PCR). It was found after cardiomyocytes were treated with AngⅡ for 30 min, the c-fos and c-jun mRNA expression in cardiomyocytes was increased significantly (P〈0.01). After treatment with AngⅡ for 24 h, the rate of protein synthesis in AngⅡ group was significantly increased as compared with control group (P〈0.01). After treatment with AngⅡ for 7 days, the size of cardiomyocytes in AngⅡ group was increased obviously as compared with control group (P〈0.05). After pretreatment with STS or Valsartan before AngⅡ treatment, both of them could inhibit the above effects of AngⅡ (P〈0.05 or P〈0.01). It was suggested that STS could ameliorate AngⅡ-induced cardiomyocyte hy- pertrophy by inhibiting c-fos and c-jun mRNA expression and reducing protein synthesis rate of cardiomyocytes.展开更多
基金supported by the Key Projects of Scientific Research Funds from Health Department of Hubei Province(No.JX5A04),China
文摘Summary: Under global cerebral ischemia, the effect of different brain temperature on cerebral ischemic injury was studied. Male Sprague-Dawley rats were divided into normothermic (37-38℃) ischemia, mild hypothermic (31 32℃) ischemia, hyperthermic (41-42℃) ischemia and sham-operated groups. Global cerebral ischemia was established using the Pulsinelli four-vessel occlusion model and brain temperature was maintained at defined level for 60 min after 20omin ischemia. The expression of c-fos protein and the levels of malondialdehyde (MDA) and lactate in brain regions were detected by immunochemistry and spectrophotometrical methods, respectively. C-fos positive neurons were found in the hippocampus and cerebral cortex after cerebral ischemia reperfusion. Mild hypothermia increased the expression of c-fos protein in both areas, whereas hyperthermia decreased the expression of c-los protein in the hippocampus at 24 h reperfusion, and the cerebral cortex at 48 h reperfusion when compared to normothermic conditions. In normothermic, mild hypothermic and hyperthermic ischemia groups, the levels of MDA and lactate in brain tissue were increased at 24, 48 and 72 h reperfusion fol- lowing 20-min ischemia as compared with the sham-operated group (P〈0.01). The levels of MDA and lactate in mild hypothermic group were significantly lower than those in normothermic group (P〈0.01). It is suggested that brain temperature influences the translation of the immunoreactive protein product of c-fos after global cerebral ischemia, and MDA and lactate are also affected by hypothermia and hyperthermia.
基金a grant from National Natural Sciences Foundation of China (No. 30500657)
文摘The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium. The cardiomyocyte size was determined by phase contrast microscope, and the rate of protein synthesis was measured by [3H]-Leucine incorporation. The c-fos and c-jun mRNA expression in cardiomyocytes was detected by reverse transcription polymerase chain reaction (RT-PCR). It was found after cardiomyocytes were treated with AngⅡ for 30 min, the c-fos and c-jun mRNA expression in cardiomyocytes was increased significantly (P〈0.01). After treatment with AngⅡ for 24 h, the rate of protein synthesis in AngⅡ group was significantly increased as compared with control group (P〈0.01). After treatment with AngⅡ for 7 days, the size of cardiomyocytes in AngⅡ group was increased obviously as compared with control group (P〈0.05). After pretreatment with STS or Valsartan before AngⅡ treatment, both of them could inhibit the above effects of AngⅡ (P〈0.05 or P〈0.01). It was suggested that STS could ameliorate AngⅡ-induced cardiomyocyte hy- pertrophy by inhibiting c-fos and c-jun mRNA expression and reducing protein synthesis rate of cardiomyocytes.