With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in m...Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.展开更多
Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not...Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method.展开更多
A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduc...A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.展开更多
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p...The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.展开更多
Traditional maize ear harvesters mainly rely on manual identification of fallen maize ears,which cannot realize real-time detection of ear falling.The improved You Only Look Once-V4(YOLO-V4)algorithm is combined with ...Traditional maize ear harvesters mainly rely on manual identification of fallen maize ears,which cannot realize real-time detection of ear falling.The improved You Only Look Once-V4(YOLO-V4)algorithm is combined with the channel pruning algorithm to detect the dropped ears of maize harvesters.K-means clustering algorithm is used to obtain a prior box matching the size of the dropped ears,which improves the Intersection Over Union(IOU).Compare the effect of different activation functions on the accuracy of the YOLO-V4 model,and use the Mish activation function as the activation function of this model.Improve the calculation of the regression positioning loss function,and use the CEIOU loss function to balance the accuracy of each category.Use improved Adam optimization function and multi-stage learning optimization technology to improve the accuracy of the YOLO-V4 model.The channel pruning algorithm is used to compress the model and distillation technology is used in the fine-tuning of the model.The final model size was only 10.77%before compression,and the test set mean Average Precision(mAP)was 93.14%.The detection speed was 112 fps,which can meet the need for real-time detection of maize harvester ears in the field.This study can provide technical reference for the detection of the ear loss rate of intelligent maize harvesters.展开更多
Phylogenetic trees have been widely used in the study of evolutionary biology for representing the tree-like evolution of a collection of species. However, different data sets and different methods often lead to the c...Phylogenetic trees have been widely used in the study of evolutionary biology for representing the tree-like evolution of a collection of species. However, different data sets and different methods often lead to the construction of different phylogenetic trees for the same set of species. Therefore, comparing these trees to determine similarities or, equivalently, dissimilarities, becomes the fundamental issue. Typically, Tree Bisection and Reconnection(TBR)and Subtree Prune and Regraft(SPR) distances have been proposed to facilitate the comparison between different phylogenetic trees. In this paper, we give a survey on the aspects of computational complexity, fixed-parameter algorithms, and approximation algorithms for computing the TBR and SPR distances of phylogenetic trees.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Supported by Northeast Agricultural University Doctoral Development FoundationChina Postdoctoral Science Foundation
文摘Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.
文摘Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method.
基金supported by the National High Technology Research and Development Program (863)of China (2012AA121602)the National Natural Science Foundation of China(11078001)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133218120037)the Fundamental Research Funds for the Central Universities under Grant(NS2014091)
文摘A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(50576033)
文摘The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.
基金This work was funded and supported by the Shandong Provincial Key Science and Technology Innovation Engineering Project(Grant No.2018CXGC0217)the 13th Five-Year National Key Research and Development Program(Grant No.2018YFD0300606).
文摘Traditional maize ear harvesters mainly rely on manual identification of fallen maize ears,which cannot realize real-time detection of ear falling.The improved You Only Look Once-V4(YOLO-V4)algorithm is combined with the channel pruning algorithm to detect the dropped ears of maize harvesters.K-means clustering algorithm is used to obtain a prior box matching the size of the dropped ears,which improves the Intersection Over Union(IOU).Compare the effect of different activation functions on the accuracy of the YOLO-V4 model,and use the Mish activation function as the activation function of this model.Improve the calculation of the regression positioning loss function,and use the CEIOU loss function to balance the accuracy of each category.Use improved Adam optimization function and multi-stage learning optimization technology to improve the accuracy of the YOLO-V4 model.The channel pruning algorithm is used to compress the model and distillation technology is used in the fine-tuning of the model.The final model size was only 10.77%before compression,and the test set mean Average Precision(mAP)was 93.14%.The detection speed was 112 fps,which can meet the need for real-time detection of maize harvester ears in the field.This study can provide technical reference for the detection of the ear loss rate of intelligent maize harvesters.
基金supported by the National Natural Science Foundation of China (Nos.61103033,61173051, 61232001,and 70921001)
文摘Phylogenetic trees have been widely used in the study of evolutionary biology for representing the tree-like evolution of a collection of species. However, different data sets and different methods often lead to the construction of different phylogenetic trees for the same set of species. Therefore, comparing these trees to determine similarities or, equivalently, dissimilarities, becomes the fundamental issue. Typically, Tree Bisection and Reconnection(TBR)and Subtree Prune and Regraft(SPR) distances have been proposed to facilitate the comparison between different phylogenetic trees. In this paper, we give a survey on the aspects of computational complexity, fixed-parameter algorithms, and approximation algorithms for computing the TBR and SPR distances of phylogenetic trees.