In this paper, firstly, a notion of a class of generalized weighted pseudo al- most periodic function is introduced, then we investigate some basic and essential properties of the space that consists of these function...In this paper, firstly, a notion of a class of generalized weighted pseudo al- most periodic function is introduced, then we investigate some basic and essential properties of the space that consists of these functions. Finally, we study the exis- tence of weighted pseudo almost periodic solutions to hematopoiesis model with time- varying delay.展开更多
The horizontal well technology has been widely applied to enhanced oil recovery for low permeability and heavy oil reservoir. It is the important basis for designing and optimizing horizontal well to determine the pro...The horizontal well technology has been widely applied to enhanced oil recovery for low permeability and heavy oil reservoir. It is the important basis for designing and optimizing horizontal well to determine the productivity. The productivity determination of horizontal wells in offshore oil fields is mainly based on the actual productivity data of producing directional wells in the similar reservoirs nearby. Considering pressure drop and oil layer thickness to calculate the productivity, this method lacks certain theoretical basis and requires rich working experience for reservoir engineers. The other method is Joshi Formula which needs the known horizontal well control radius to be known. But the control radius is man-made at certain degree. In order to address the shortcomings of existing methods, a new reservoir engineering method was proposed to determine the horizontal well productivity formula, horizontal flow pattern and control radius based on the principle of equivalent flow resistance and conformal transformation. This method has overcome the disadvantage of determining on person. It provided some theoretical basis for getting the horizontal well productivity and is of some guiding meaning for evaluating the productivity of adjustment wells and development wells.展开更多
A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fou...A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.展开更多
To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave pro...To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.展开更多
A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize fram...A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize frame synchronization,compensate the carrier frequency offset(CFO),and estimate and equalize channel simultaneously.Since there is no pilot signals or training symbols in TDS-OFDM,the proposed scheme can achieve higher spectral efficiency(SE)above 10%improvement comparing with CPOFDM.The proposed method is implemented and verified in a 28GBaud QPSK OFDM system and a 28GBaud 16QAM OFDM system.It is demonstrated that the proposed scheme shows high CFO estimation accuracy and synchronous accuracy.Under CFO and linewidth of laser source set as 100MHz and 100kHz respectively,BER of QPSK OFDM system is below 3.8e-3 at the optical signal-to-noise ratio(OSNR)of 13dB,and BER of 16QAM OFDM system is below 3.8e-3 at the OSNR of 20dB.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
Sound generated in a ward can be classified into 1) generated by medical staff, 2) generated by patients and their visitors, and 3) others, such as from in-hospital broadcasting microphones and nurse calls. Among thes...Sound generated in a ward can be classified into 1) generated by medical staff, 2) generated by patients and their visitors, and 3) others, such as from in-hospital broadcasting microphones and nurse calls. Among these sounds, the incidence from medical staff, in particular, is reportedly high. The study objective is to investigate whether sound awareness is effective in regulating the sound environment even in a busy situation, such as in a real clinical setting, and to examine the extent to which sound awareness affects sound level. Nursing students were asked to perform a series of nursing activities in a pseudo-ward, and the changes in the sound level generated during the nursing activities with or without time and sound awareness were examined. Under varying experimental conditions, the sound and time levels associated with the nursing activities were measured in the following order: condition 1, without sound or time awareness;condition 2, with time awareness but without sound awareness;and condition 3, with both sound and time awareness. The time to perform nursing activities was longer with sound awareness. However, when aware of time only, the sound level from nursing activities rose by 2.3 dB, whereas when aware of both time and sound, the sound level dropped by 3.0 dB. With both time and sound awareness, there is a distinct drop in the sound level from nursing activities, such as wagon handling, handling of items (trays, bowls), working at the sink, and opening and closing the microwave oven door. These results suggest that even in a pseudo-clinical setting it is possible to regulate the environmental sound through the environmental sound awareness of the medical staff, resulting in a drop in the sound level generated while performing nursing activities.展开更多
The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-...The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.展开更多
Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-async...Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification.展开更多
基金supported by Natural Science Foundation of China (No.1771414)Natural Science Foundation of Anhui(Nos. 1608085MA12,1708085MA16)2017 Anhui Province Outstanding Young Talent Project (No.gxyq2107048)
文摘In this paper, firstly, a notion of a class of generalized weighted pseudo al- most periodic function is introduced, then we investigate some basic and essential properties of the space that consists of these functions. Finally, we study the exis- tence of weighted pseudo almost periodic solutions to hematopoiesis model with time- varying delay.
文摘The horizontal well technology has been widely applied to enhanced oil recovery for low permeability and heavy oil reservoir. It is the important basis for designing and optimizing horizontal well to determine the productivity. The productivity determination of horizontal wells in offshore oil fields is mainly based on the actual productivity data of producing directional wells in the similar reservoirs nearby. Considering pressure drop and oil layer thickness to calculate the productivity, this method lacks certain theoretical basis and requires rich working experience for reservoir engineers. The other method is Joshi Formula which needs the known horizontal well control radius to be known. But the control radius is man-made at certain degree. In order to address the shortcomings of existing methods, a new reservoir engineering method was proposed to determine the horizontal well productivity formula, horizontal flow pattern and control radius based on the principle of equivalent flow resistance and conformal transformation. This method has overcome the disadvantage of determining on person. It provided some theoretical basis for getting the horizontal well productivity and is of some guiding meaning for evaluating the productivity of adjustment wells and development wells.
基金Supported by the National Natural Science Fundation of China(Grant No.69775009)
文摘A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.
基金This paper is supported by the Focused Subject Program of Beijing (No. XK104910598)Foundation for Returned Students of Ministry of Education, and Foundation of China University of Geosciences (Beijing).
文摘To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.
基金supported by the State Grid Corporation of China (No. 5101/2017-3205A)the Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications (Jinan University)the National Natural Science Foundation of China (NSFC) (61571057, 61501214, 61527820, 61575082)
文摘A spectrum efficient OFDM scheme named Time Domain Synchronous-OFDM(TDS-OFDM)is introduced into coherent optical transmission system,in which the pseudo noise(PN)sequence is exploited as guard interval to realize frame synchronization,compensate the carrier frequency offset(CFO),and estimate and equalize channel simultaneously.Since there is no pilot signals or training symbols in TDS-OFDM,the proposed scheme can achieve higher spectral efficiency(SE)above 10%improvement comparing with CPOFDM.The proposed method is implemented and verified in a 28GBaud QPSK OFDM system and a 28GBaud 16QAM OFDM system.It is demonstrated that the proposed scheme shows high CFO estimation accuracy and synchronous accuracy.Under CFO and linewidth of laser source set as 100MHz and 100kHz respectively,BER of QPSK OFDM system is below 3.8e-3 at the optical signal-to-noise ratio(OSNR)of 13dB,and BER of 16QAM OFDM system is below 3.8e-3 at the OSNR of 20dB.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
文摘Sound generated in a ward can be classified into 1) generated by medical staff, 2) generated by patients and their visitors, and 3) others, such as from in-hospital broadcasting microphones and nurse calls. Among these sounds, the incidence from medical staff, in particular, is reportedly high. The study objective is to investigate whether sound awareness is effective in regulating the sound environment even in a busy situation, such as in a real clinical setting, and to examine the extent to which sound awareness affects sound level. Nursing students were asked to perform a series of nursing activities in a pseudo-ward, and the changes in the sound level generated during the nursing activities with or without time and sound awareness were examined. Under varying experimental conditions, the sound and time levels associated with the nursing activities were measured in the following order: condition 1, without sound or time awareness;condition 2, with time awareness but without sound awareness;and condition 3, with both sound and time awareness. The time to perform nursing activities was longer with sound awareness. However, when aware of time only, the sound level from nursing activities rose by 2.3 dB, whereas when aware of both time and sound, the sound level dropped by 3.0 dB. With both time and sound awareness, there is a distinct drop in the sound level from nursing activities, such as wagon handling, handling of items (trays, bowls), working at the sink, and opening and closing the microwave oven door. These results suggest that even in a pseudo-clinical setting it is possible to regulate the environmental sound through the environmental sound awareness of the medical staff, resulting in a drop in the sound level generated while performing nursing activities.
基金supported by the National Natural Science Foundation of China (NSFC) under contract granted No. 41474110Research Foundation of China University of Petroleum-Beijing at Karamay under contract number RCYJ2018A-01-001
文摘The conventional pseudo-acoustic wave equations(PWEs) in vertical transversely isotropic(VTI)media may generate SV-wave artifacts and propagation instabilities when anisotropy parameters cannot satisfy the pseudo-acoustic assumption. One solution to these issues is to use pure acoustic anisotropic wave equations, which can produce stable and pure P-wave responses without any SVwave pollutions. The commonly used pure acoustic wave equations(PAWEs) in VTI media are mainly derived from the decoupled P-SV dispersion relation based on first-order Taylor-series expansion(TE), thus they will suffer from accuracy loss in strongly anisotropic media. In this paper, we adopt arbitrary-order TE to expand the square root term in Alkhalifah's accurate acoustic VTI dispersion relation and solve the corresponding PAWE using the normalized pseudoanalytical method(NPAM) based on optimized pseudodifferential operator. Our analysis of phase velocity errors indicates that the accuracy of our new expression is perfectly acceptable for majority anisotropy parameters. The effectiveness of our proposed scheme also can be demonstrated by several numerical examples and reverse-time migration(RTM) result.
基金supported by the National Natural Science Foundation of China(61273333)
文摘Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification.