The main purpose of this paper is to study a new iterative algorithm for finding a common element of the set of solutions for a generalized equilibrium problem and the set of fixed points for a k-strict pseudocontract...The main purpose of this paper is to study a new iterative algorithm for finding a common element of the set of solutions for a generalized equilibrium problem and the set of fixed points for a k-strict pseudocontractive mapping in the Hilbert space. The presented results extend and improve the corresponding results reported in the lit-erature.展开更多
In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operato...In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operator equations, and the fixed points of strong pseudocontractions. These results extend and improve Theorems 1-3 of Chidume and Osilike (Nonlinear Anal. TMA, 1999, 36(7): 863-872).展开更多
The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper exten...The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper extend and improve the corresponding results of Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et ah [J. Math. Anal. Appl., 314, 701 709 (2006)], Xu and Ori [Numer. Funct. Anal. Optim, 22, 767-773 (2001)] and Osilike [J. Math. Anal. Appl., 294, 73-81 (2004)]. Keywords展开更多
With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding ...With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding results of Chidume are improved.展开更多
In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution s...In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.展开更多
In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are inv...In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.展开更多
In this paper, we investigate the Ishikawa iteration process in a p-uniformly smooth Banach space X. We prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T i...In this paper, we investigate the Ishikawa iteration process in a p-uniformly smooth Banach space X. We prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T is a Lipschitzian and strongly accretive operator frow X to X, or to the unique fixed point of T when T is a Lipschitzian and strictly pseudocontractive mapping from a nonempty closed convex subset K of X into itself. Our results are the extension and improvements of the earlier and recent results in this field.展开更多
It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper pro...It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.展开更多
Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in th...Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results展开更多
Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by ...Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.展开更多
The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution ( fixed point) of pseudocontractive operators and its v...The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution ( fixed point) of pseudocontractive operators and its variants. The object is to introduce a perturbed iteration method for proving the convergence of sequence of Lipschitzian pseudocontractive mapping using approximate fixed point technique. This iteration can be ued for nonlinear operators which are more general than Lipschitzian pseudocontractive operator and Bruck iteration fails for proving their convergence. Our results generalize the results of Chidume and Zegeye.展开更多
In this article, we first introduce an iterative method based on the hybrid viscos- ity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (...In this article, we first introduce an iterative method based on the hybrid viscos- ity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (assuming existence) and prove that our proposed scheme has strong convergence under some mild conditions imposed on algorithm parameters in real Hilbert spaces. Next, we introduce a new iterative method for a solution of a non- linear integral equation of Hammerstein type and obtain strong convergence in real Hilbert spaces. Our results presented in this article generalize and extend the corresponding results on Lipschitz pseudocontractive mapping and nonlinear integral equation of Hammerstein type reported by some authors recently. We compare our iterative scheme numerically with other iterative scheme for solving non-linear integral equation of Hammerstein type to verify the efficiency and implementation of our new method.展开更多
In this paper,we consider system of variational inclusions and its several spacial cases,namely,alternating point problems,system of variational inequalities,etc.,in the setting of Hadamard manifolds.We propose an ite...In this paper,we consider system of variational inclusions and its several spacial cases,namely,alternating point problems,system of variational inequalities,etc.,in the setting of Hadamard manifolds.We propose an iterative algorithm for solving system of variational inclusions and study its convergence analysis.Several special cases of the proposed algorithm and convergence result are also presented.We present application to constraints minimization problems for bifunctions in the setting of Hadamard manifolds.At the end,we illustrate proposed algorithms and convergence analysis by a numerical example.The algorithms and convergence results of this paper either improve or extend known algorithms and convergence results from linear structure to Hadamard manifolds.展开更多
Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical meth...Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.展开更多
Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have...Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.展开更多
In this paper, we investigate the Ishikawa iteration process in a p -uniformly smooth Banach space X . Motivated by Deng and Tan and Xu , we prove that the Ishikawa iteration process converges...In this paper, we investigate the Ishikawa iteration process in a p -uniformly smooth Banach space X . Motivated by Deng and Tan and Xu , we prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T is a Lipschitzian and strongly accretive operator from X to X , or to the unique fixed point of T when T is a Lipschitzian and strictly pseudo contractive mapping from a bounded closed convex subset C of X into itself. Our results improve and extend Theorem 4.1 and 4.2 of Tan and Xu by removing the restrion lim n→∞β n=0 or lim n→∞α n= lim n→∞β n=0 in their theorems. These also extend Theorems 1 and 2 of Deng to the p -uniformly smooth Banach space setting.展开更多
Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ...Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ∈ C. For each n ≥ 1, xn is a unique fixed point of the contraction Sn(x) = (1 - (tn)/(Lkn))u + (tn)/(Lkn)Tnx(?)x ∈ C, where {tn}(?)[0,1). Under suitable conditions, the strong convergence of the sequence{xn}to a fixed point of T is characterized.展开更多
In this paper, by using new analysis techniques, we have studied iterative construc- tion problem for finding zeros of accretive mappings in uniformly smooth Banach spaces, and improved a theorem due to Reich. As its ...In this paper, by using new analysis techniques, we have studied iterative construc- tion problem for finding zeros of accretive mappings in uniformly smooth Banach spaces, and improved a theorem due to Reich. As its application, we have deduced a strong convergence theorem of fixed points for continuous pseudo-contractions.展开更多
In this paper, we will establish several strong convergence theorems for the approximation of common fixed points of r-strictly asymptotically pseudocontractive mappings in uniformly convex Banach spaces using the mod...In this paper, we will establish several strong convergence theorems for the approximation of common fixed points of r-strictly asymptotically pseudocontractive mappings in uniformly convex Banach spaces using the modiied implicit iteration sequence with errors, and prove the necessary and sufficient conditions for the convergence of the sequence. Our results generalize, extend and improve the recent work, in this topic.展开更多
In this paper, by using Mann's iteration process we will establish several weak convergence theorems for approximating a fixed point of k-strictly pseudocontractive mappings with respect to p in p-uniformly convex Ba...In this paper, by using Mann's iteration process we will establish several weak convergence theorems for approximating a fixed point of k-strictly pseudocontractive mappings with respect to p in p-uniformly convex Banach spaces. Our results answer partially the open question proposed by Marino and Xu, and extend Reich's theorem from nonexpansive mappings to k-strict pseudocontractive mappings.展开更多
基金supported by the Sichuan Educational Committee Science Foundation for Youths (No. 08ZB002) the Natural Science Foundation of Sichuan Province (No. 2008ZC001)
文摘The main purpose of this paper is to study a new iterative algorithm for finding a common element of the set of solutions for a generalized equilibrium problem and the set of fixed points for a k-strict pseudocontractive mapping in the Hilbert space. The presented results extend and improve the corresponding results reported in the lit-erature.
基金NNSF of China(19801023)Teachiug and Research A ward Fund for Outstanding Young Teachers in Higher Edncation Institutions of MOE.Chinal.
文摘In this paper, the results characterize the convergence of Ishikawa type iterative sequences (with errors) for constructing the solutions of strongly accretive operator equations, the solutions of rn-accretive operator equations, and the fixed points of strong pseudocontractions. These results extend and improve Theorems 1-3 of Chidume and Osilike (Nonlinear Anal. TMA, 1999, 36(7): 863-872).
基金Supported by Natural Science Foundation of Yibin University (Grant No. 2009Z3)
文摘The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper extend and improve the corresponding results of Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et ah [J. Math. Anal. Appl., 314, 701 709 (2006)], Xu and Ori [Numer. Funct. Anal. Optim, 22, 767-773 (2001)] and Osilike [J. Math. Anal. Appl., 294, 73-81 (2004)]. Keywords
文摘With an inequality and some analysis techniques,iterative approximation of fixed points for uniformly continuous and strongly pseudocontractive mappings in smooth Banach spaces is studied,and the recent corresponding results of Chidume are improved.
基金supported by National Research Foundation of Korea Grantfunded by the Korean Government (2009-0076898)
文摘In this paper,we consider an iterative sequence for generalized equilibrium problems and strictly pseudocontractive mappings.We show that the iterative sequence converges strongly to a common element of the solution set of generalized equilibrium problems and of the fixed point set of strictly pseudocontractive mappings.
基金Supported by the National Science Foundation of Yunnan Province(2 0 0 2 A0 0 58M)
文摘In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.
基金The project supported by the Science and Technology Development Fund of Shanghai Higher Learning
文摘In this paper, we investigate the Ishikawa iteration process in a p-uniformly smooth Banach space X. We prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T is a Lipschitzian and strongly accretive operator frow X to X, or to the unique fixed point of T when T is a Lipschitzian and strictly pseudocontractive mapping from a nonempty closed convex subset K of X into itself. Our results are the extension and improvements of the earlier and recent results in this field.
基金Supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Ed-ucation Institutions of MOE,P.R.C.
文摘It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure.The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.
基金This project was supported both by the National Natural Science Foundation of China (1 980 1 0 2 3 ) andby the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institu-tions of MOEP.R.C.
文摘Itis shown that any fixed point of each Lipschitzian,strictly pseudocontractive map- ping T on a closed convex subset K of a Banach space X may be norm approximated by Ishikawa iterative procedure.The argument in this paper provides a convergence rate estimate. Moreover the resultin this paper improves,generalizes and summarizes some important and el- egant recent results
文摘Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.
文摘The solution to evolution equations has developed an independent theory within nonlinear analysis dealing with the existence and approximation of such solution ( fixed point) of pseudocontractive operators and its variants. The object is to introduce a perturbed iteration method for proving the convergence of sequence of Lipschitzian pseudocontractive mapping using approximate fixed point technique. This iteration can be ued for nonlinear operators which are more general than Lipschitzian pseudocontractive operator and Bruck iteration fails for proving their convergence. Our results generalize the results of Chidume and Zegeye.
文摘In this article, we first introduce an iterative method based on the hybrid viscos- ity approximation method and the hybrid steepest-descent method for finding a fixed point of a Lipschitz pseudocontractive mapping (assuming existence) and prove that our proposed scheme has strong convergence under some mild conditions imposed on algorithm parameters in real Hilbert spaces. Next, we introduce a new iterative method for a solution of a non- linear integral equation of Hammerstein type and obtain strong convergence in real Hilbert spaces. Our results presented in this article generalize and extend the corresponding results on Lipschitz pseudocontractive mapping and nonlinear integral equation of Hammerstein type reported by some authors recently. We compare our iterative scheme numerically with other iterative scheme for solving non-linear integral equation of Hammerstein type to verify the efficiency and implementation of our new method.
文摘In this paper,we consider system of variational inclusions and its several spacial cases,namely,alternating point problems,system of variational inequalities,etc.,in the setting of Hadamard manifolds.We propose an iterative algorithm for solving system of variational inclusions and study its convergence analysis.Several special cases of the proposed algorithm and convergence result are also presented.We present application to constraints minimization problems for bifunctions in the setting of Hadamard manifolds.At the end,we illustrate proposed algorithms and convergence analysis by a numerical example.The algorithms and convergence results of this paper either improve or extend known algorithms and convergence results from linear structure to Hadamard manifolds.
文摘Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.
文摘Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.
文摘In this paper, we investigate the Ishikawa iteration process in a p -uniformly smooth Banach space X . Motivated by Deng and Tan and Xu , we prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T is a Lipschitzian and strongly accretive operator from X to X , or to the unique fixed point of T when T is a Lipschitzian and strictly pseudo contractive mapping from a bounded closed convex subset C of X into itself. Our results improve and extend Theorem 4.1 and 4.2 of Tan and Xu by removing the restrion lim n→∞β n=0 or lim n→∞α n= lim n→∞β n=0 in their theorems. These also extend Theorems 1 and 2 of Deng to the p -uniformly smooth Banach space setting.
基金The Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China, and The Dawn Program Fund in Shanghai.
文摘Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ∈ C. For each n ≥ 1, xn is a unique fixed point of the contraction Sn(x) = (1 - (tn)/(Lkn))u + (tn)/(Lkn)Tnx(?)x ∈ C, where {tn}(?)[0,1). Under suitable conditions, the strong convergence of the sequence{xn}to a fixed point of T is characterized.
基金the National Natural Science Foundation of China (No.10471033)
文摘In this paper, by using new analysis techniques, we have studied iterative construc- tion problem for finding zeros of accretive mappings in uniformly smooth Banach spaces, and improved a theorem due to Reich. As its application, we have deduced a strong convergence theorem of fixed points for continuous pseudo-contractions.
基金Scientific Research Fund of Zhejiang Provincial Education Department(No.20051778 and No.20051760)Scientific Research Fund of Ningbo University(200542)
文摘In this paper, we will establish several strong convergence theorems for the approximation of common fixed points of r-strictly asymptotically pseudocontractive mappings in uniformly convex Banach spaces using the modiied implicit iteration sequence with errors, and prove the necessary and sufficient conditions for the convergence of the sequence. Our results generalize, extend and improve the recent work, in this topic.
基金Supported by National Science Foundation of China(60872095)Natural Science Foundation of Zhejiang Province(Y606093)K.C.Wong Magna Fund in Ningbo University and Ningbo Natural Science Foundation(2008A610018).
文摘In this paper, by using Mann's iteration process we will establish several weak convergence theorems for approximating a fixed point of k-strictly pseudocontractive mappings with respect to p in p-uniformly convex Banach spaces. Our results answer partially the open question proposed by Marino and Xu, and extend Reich's theorem from nonexpansive mappings to k-strict pseudocontractive mappings.