Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospit...Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospitalized in educational-therapeutic hospitals and were identified using standard microbiological tests.Then,the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method.The bacterial DNAs were extracted by the alkaline lysis method.Finally,the presence of exoU and exoY genes was evaluated by the PCR test.Results:In this study,47%,72%,29%,39%,40%,and 44%of the isolates were non-susceptible to piperacillin,aztreonam,ceftazidime,imipenem,tobramycin,and ciprofloxacin,respectively.In addition,95%and 93%of the clinical isolates carried the exoU and exoY genes.Blood and fecal isolates had both virulence genes,while only one wound isolate had neither genes.Meanwhile,all urinary isolates contained the exoY gene and only one isolate lacked the exoU gene.Also,88 isolates simultaneously had both exoU and exoY genes.Conclusions:High prevalence of exoU and exoY genes in this region indicates a significant role of typeⅢsecretion system in pathogenesis of Pseudomonas aeruginosa.The typeⅢsecretion system may be a suitable target to reduce the pathogenicity of this bacterium.展开更多
[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake...[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake experiment of M.aeruginosa under different pH conditions(8.0-10.0) and the effect experiment on the phosphorus metabolism of M.aeruginosa and adnascent Pseudomonas under different pH conditions(7.0-9.0),the phosphorus uptake of M.aeruginosa in the short time and the growth curve of M.aeruginosa,the change of phosphorus concentration in the water,the change of total phosphorus content in M.aeruginosa in the longer time were measured.[Results] In the short time,pH value had the effects on the absorption phosphorus ability of M.aeruginosa.As pH value rose,the absorption phosphorus ability enhanced.During the longer time,the higher pH value was,the quicker the growth speed of M.aeruginosa was,and the better the growth situation was.M.aeruginosa had the ability of self regulation pH value and could use the phosphorus well in the water which was released from Pseudomonas.In the system of the algae,bacteria and water,the phosphorus in the bacteria played the role of phosphorus source which was released slowly.Though the phosphorus concentration was lower,it was favorable to the growth of algae.[Conclusions] pH value was the factor that affected the circle of the phosphorus element in the system of algae-bacteria-water.展开更多
The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,w...The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,wherein the metabolic activities of microorganisms can transform toxic pesticides into compounds with lower or no toxicity.In this study,we obtained eight pesticide-degrading strains from pesticide-contaminated sites through continuous enrichment and screening.Four highly efficient pesticide-degrading strains(degradation ratios exceeding 80%)were identified.Among them,Pseudomonas sp.BL5 exhibited the strongest growth(exceeding 10^(9) CFU·ml^(-1))and outstanding degradation of benzene derivatives and chlorinated hydrocarbons at both laboratory and pilot scales,with degradation ratios exceeding 98%and 99.6%,respectively.This research provides new tools and insights for the bioremediation of pesticide-related pollutants.展开更多
To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics...To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics,corrosion behavior(morphology observation and electrochemical properties),and antimicrobial performance of Fe_(x)Cu_((1−x))CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa.The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties.Results revealed that all Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs exhibited an FCC(face centered cubic)phase,with significant grain refinement observed in Fe_(0.75)Cu_(0.25)CoNiCrMn HEA.Electrochemical tests indicated that Fe_(0.75)Cu_(0.25)CoNiCrMn HEA demonstrated lower corrosion current density(i_(corr))and pitting potential(E_(pit))compared to other Fe_(x)Cu_((1−x))CoNiCrMn HEAs in P.aeruginosa-inoculated medium,exhibiting superior resistance to MIC.Anti-microbial tests showed that after 14 d of immersion,Fe_(0.75)Cu_(0.25)CoNiCrMn achieved an antibacterial rate of 89.5%,effectively inhibiting the adhesion and biofilm formation of P.aeruginosa,thereby achieving resistance to MIC.展开更多
Objective:To study characteristics of phospholipases C(PLCs),their importance for producing microorganisms us well us the potential of their use for industrial purposes.Methods:PLC from Bacillus cereus(B.cereus) D101 ...Objective:To study characteristics of phospholipases C(PLCs),their importance for producing microorganisms us well us the potential of their use for industrial purposes.Methods:PLC from Bacillus cereus(B.cereus) D101 was selected as an example of Gram-positive PLCs and PLC from Pseudomanas aeruginosa(P.aeruginosa) D183 of Gram-negative ones.Enzymes were partially purified by ammonium sulfate precipitation followed by membrane dialysis.Partially purified preparations were used to study effect of different factors on activities as well as in substrate specificity tests which were conducted using a turbidimetric assay method.Results:Maximum activity was at pH 7 and 8 and 40 ℃ for P.aeruginosa PLC,and pH 8-10 and 37 ℃ for B.cereus PLC.Both PLCs were inhibited by Pi at 5 mM or higher,whereas,PLC from B.cereus only was inhibited by EDTA.Activity of P.aeruginosa PLC was not affected by removing Zn^(2+) ions from reaction mixture or their replacement with Ca^(2+),Ba^(2+),Mg^(2+) or Mn^(2+)ions.Vis-a-vis,activity of B.cereus PLC was found to be metal ion dependent PLCs from both isolates were relatively thermostable and showed maximum affinity toward phosphatidylcholine.Sphingomyelin and phosphatidylethanolamine were not good substrates and phosphatidylinositol,phosphatidylserine,phosphatidylglycerol and cardiolipin could be considered nonsubstrates.Conclusions:Human body physiological conditions could favor activity of P.aeruginosa and B.cereus PLCs.These enzymes may participate in phosphate scavenging and virulence of producing isolates but not in autolysis.PLCs from both isolates are potential candidates for industrial use.展开更多
Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type Ⅲ secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cel...Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type Ⅲ secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions. Specialized bacterial chaperones are required for effective secretion of some effectors. To identify the chaperone of ExoS, the representative effector secreted by the TTSS of P aeruginosa, we analyzed the role of a postulated chaperone termed Orfl. Methods By allelic exchange, we constructed the mutant with the deletion of gene Orfl. Analysis of secreted and cell-associated fractions was performed by SDS-PAGE and Western blotting. Using strain expressing in trans Orfl, tagged by V5 polypeptide and histidine, protein-protein interaction was determined by affinity resin pull-down assay in combination with MALDI-TOF The role of Orfl in the expression of exoS was evaluated by gene reporter analysis. Results Pull-down assay showed that Orfl binds to ExoS and ExoT. Secretion profile analysis showed that Orfl was necessary for the optimal secretion of ExoS and ExoT. However, Orfl had no effect on the expression of exoS. Conclusion Orfl is important for the secretion of ExoS probably by maintaining ExoS in a secretion-competent conformation. We propose to name Orfl as SpcS for "specific Pseudomonas chaperone for ExoS".展开更多
Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3- and Mg2...Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3- and Mg2+ concentrations as the variables. Meanwhile, fed-batch fermentation experiments were conducted. The results show that the three variables are closely related to rhamnolipid production. The optimal cultivation conditions are of 6.4 g/L NaNO3 , 3.1 g/L MgSO4 at 32 ℃, with the maximum rhamnolipid production of 6.6 g/L. The results of fed-batch fermentation experiments show that feeding the oil in two batches can enhance rhamnolipid production. The best time interval is 72 h with the maximum rhamnolipid production of 8.5 g/L. The data are potentially useful for mass production of rhamnolipid on oil waste with this bacterium.展开更多
Background:Azadirachta indica(A.indica),commonly known as neem,is a widely distributed medicinal plant in Asia and Africa and is well known to have a wide spectrum of biological activity.A.indica is considered a skin ...Background:Azadirachta indica(A.indica),commonly known as neem,is a widely distributed medicinal plant in Asia and Africa and is well known to have a wide spectrum of biological activity.A.indica is considered a skin food that was traditionally used in different cultures to treat a wide range of skin disorders.A.indica was reported to possess antibacterial activity against Pseudomonas aeruginosa(P.aeruginosa)which is considered the most common biofilm model organism.This study aims to investigate the ability of A.indica cultivated in Egypt to inhibit/reduce the biofilm formation by P.aeruginosa.Methods:The microtiter plate assay was used to evaluate the anti-biofilm activity of neem,cultivated in Egypt,leaves against P.aeruginosa as well as the ability to reduce the activity of P.aeruginosa.To investigate the phytocompounds responsible for their bioactivity and to explore potential interactions between their bioactive components and one of the quorum-sensing regulatory proteins of P.aeruginosa involved in biofilm formation,liquid chromatography-mass spectrometric and molecular docking studies were done.Results:Results showed that methanol extract of leaves can reduce the formation of P.aeruginosa biofilm at lower concentrations than those reported in other regions with 1.25 mg/mL as the optimum concentration.The two-way analysis of variance revealed the significance of the extract effect and its concentration on the reduction of biofilm formation(P<0.05).Liquid chromatography-mass spectrometric study revealed the presence of fourteen compounds that belong to limonoids and flavonoids.Molecular docking analysis against LasR,the quorum-sensing regulatory protein,of P.aeruginosa supported these findings.Nimbolinin,a limonoid,has achieved the highest Libdock score of 138.769.Conclusion:It was concluded that A.indica,cultivated in Egypt,leaves can target LasR as a new mechanism of action for biofilm control by A.indica and therefore could be a good source of leads for anti-biofilm medicine.展开更多
Background:Pudilan Xiaoyan Oral Liquid(PDL)is a Chinese patent medicine with notable pharmacological properties,including anti-inflammatory and antibacterial effects.Drug-resistant Pseudomonas aeruginosa infection is ...Background:Pudilan Xiaoyan Oral Liquid(PDL)is a Chinese patent medicine with notable pharmacological properties,including anti-inflammatory and antibacterial effects.Drug-resistant Pseudomonas aeruginosa infection is a common and refractory bacterial infection in clinical practice.Due to its high drug resistance,it brings great challenges to treatment.This study aimed to assess the therapeutic efficacy of PDL in a murine model of pneumonia induced by drug-resistant Pseudomonas aeruginosa.Methods:Three different doses of PDL(11 mL/kg/d,5.5 mL/kg/d,2.75 mL/kg/d)were used to observe lung tissue pathology and inflammatory cytokine levels in pneumonia mouse models induced by multidrug-resistant Pseudomonas aeruginosa(MDR-PA).Additionally,the protective efficacy of PDL against mortality in infected mice was evaluated using a death model caused by MDR-PA.Finally sub-MIC concentration of levofloxacin was used to induce drug-resistant mice pneumonia model to evaluate the role of PDL in reversing drug resistance.Experimental data are expressed as mean±standard deviation.Statistical significance was determined by one-way analysis of variance followed by Tukey’s multiple-comparisons test.Results:Treatment effect of PDL on MDR-PA pneumonia:the medium and small doses of PDL can significantly reduce the lung index of multi-drug resistant bacteria infected pneumonia model mice(P<0.05),the lung index inhibition rates for these groups were 55.09%and 58.43%,and improve the degree of lung tissue lesions of mice;The expression of serum cytokines keratinocyte chemoattractant,tumor necrosis factor-αand monocyte chemoattractant protein-1 could be decreased in the three dosage groups of PDL(P<0.01).PDL treatment not only lowered the mortality but also extended the survival duration in mice infected with MDR-PA.It was found after sub-MIC concentration of levofloxacin induced resistance of Pseudomonas aeruginosa to pneumonia in mice.Compared with the model group,the lung index of mice in high and medium PDL doses was significantly reduced(P<0.05),with inhibition rates of 32.16%and 37.73%,respectively.Conclusion:PDL demonstrates protective effects against MDR-PA infection pneumonia,notably decreasing serum inflammatory factor levels.It shows promise in mitigating antibiotic resistance and offers potential for treating pneumonia resulting from Pseudomonas aeruginosa resistance.展开更多
Objective:Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of nosocomial infections. Currently a notable increase in the prevalence of multidrug-resistant P.aeruginosa worldwide has been repor...Objective:Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of nosocomial infections. Currently a notable increase in the prevalence of multidrug-resistant P.aeruginosa worldwide has been reported in hospitalized patients and was associated with high morbidity and mortality.Methods:A retrospective laboratory based analysis regarding the spectrum and distribution of P.aeruginosa from a wide range of clinical samples in Hospital Universiti Sains Malaysia since January 2003 to December 2007 was done.Results: Altogether,there were 2 308 clinical isolates analyzed.The main sources of P.aeruginosa were from swab,respiratory,urine and blood specimens which accounted for 28.2%,21.8%,13.2%and 12.8% respectively.Results showed significant reduction in percentage of resistant towards three antibiotic namely ciprofloxacin,ceftazidime and imipenem.However the percentage of pan-resistant P.aeruginosa increased steadily over these years.Conclusion:This data is helpful to the clinician in guiding the choice of appropriate antibiotic to treat P.aeruginosa infection.At the same time,it warrants a more aggressive infection control activity to be implemented to control the spread of pan resistant strain in this centre.展开更多
Objective: To evaluate the drug susceptibility profiles and the frequency of beta-lactamase encoding genes in Pseudomonas aeruginosa (P. aeruginosa) obtained from burn patients. Methods: Totally 93 non-duplicate clini...Objective: To evaluate the drug susceptibility profiles and the frequency of beta-lactamase encoding genes in Pseudomonas aeruginosa (P. aeruginosa) obtained from burn patients. Methods: Totally 93 non-duplicate clinical isolates of P. aeruginosa were recovered from burn patients of Taleghani Burn Hospital of Ahvaz. Antibiotic susceptibility testing was conducted by disk diffusion method according to the CLSI 2017 recommendations. PCR assay was performed by to find beta-lactamase encoding genes. Results: In this study, most clinical specimen was obtained via wound swabs [65 (69.9%)], followed by blood [14 (15.1%)] and biopsy (7 (7.5%))Forty-two (45.16%) patients were male and 51(54.84%) were female. High resistance was observed for most of antibiotics especially for gentamicin and ciprofloxacin (Up to 85%), whereas the highest susceptibility was reported for colistin (100.0%), followed by ceftazidime (66.7%). According to PCR results, 16.1% (15), 9.7% (9) and 14.0% (13) of isolates carried blaDHA, blaVEB and blaGES genes, respectively. It also revealed that the blaVEB gene was found to coexist within 2 isolates (2.2%). Conclusions: Antibacterial resistance is high among P. aeruginosa isolates. Colistin is highly active against multi-drug resistant P. aeruginosa isolates. Antimicrobial susceptibility testing can confine indiscriminate uses of antibiotics and resistance increase, and can improve management of treatment.展开更多
Limited research has suggested iron oxide nanoparticles (FeNP) have an inhibitory effect against several different genera of bacteria: Staphylococcus, Bacillus and Pseudomonas spp. In this study we looked at the effec...Limited research has suggested iron oxide nanoparticles (FeNP) have an inhibitory effect against several different genera of bacteria: Staphylococcus, Bacillus and Pseudomonas spp. In this study we looked at the effect of three different sets of Fe3O4 nanoparticles (FeNPs) on the development of Pseudomonas aeruginosa PAO1 biofilms. Two of the tested NPs were SPIONs (Superparamagnetic Iron Oxide Nanoparticles). Exposure of cells to the SPIONs at concentrations up to 200 μg/ml resulted in an increase in biofilm biomass by 16 h under static conditions and a corresponding increase in cell density in the bulk liquid. In contrast, these biofilms had decreased levels of extracellular DNA (eDNA). Fe(II) levels in the supernatants of biofilms formed in the presence of FeNPs exceeded 100 μM compared with 20 μM in control media without cells. Spent cell supernatants had little effect on Fe(II) levels. Cells also had an effect on the aggregation behavior of these nanoparticles. SPIONs incubated with cells exhibited a decrease in the number and size of FeNP aggregates visible using light microscopy. SPIONs resuspended in fresh media or spent culture supernatants formed large aggregates visible in the light microscope upon exposure to a supermagnet;and could be pelleted magnetically in microtitre plate wells. In contrast, SPION FeNPs incubated with cells were unaffected by exposure to the supermagnet and could not be pelleted. The results of this study indicate a need to reconsider the effects of FeNPs on bacterial growth and biofilm formation and the effect the bacterial cells may have on the use and recovery of SPIONs.展开更多
Pseudomonas aeruginosa remains an important pathogen. Our purpose was to determine the minimum inhibitory con-centration (MIC) and pharmacodynamic (PD) parameters predicting a positive response to therapy with piperac...Pseudomonas aeruginosa remains an important pathogen. Our purpose was to determine the minimum inhibitory con-centration (MIC) and pharmacodynamic (PD) parameters predicting a positive response to therapy with piperacil-lin-tazobactam. Medical records were retrospectively reviewed at 3 centers. Data were recorded to assess age, type of disease, renal function, weight (body mass), MIC, antimicrobial treatment, and clinical outcome. Success was response to piperacillin-tazobactam alone, or in combination with another active agent;failure was lack of response. Of 78 eva-luable patients, 63 responded (7 UTI;56 non-UTI) and 15 did not;26 responding received combination therapy and 37 monotherapy. Piperacillin-tazobactam treatment was successful in 53 of 63 of non-UTI disease with a MIC of ≤64/4 μg/mL, but in only 3 of 7 with a MIC of >64/4 μg/mL (P = 0.023);overall 9 of 10 infections by strains with MICs = 32 - 64 μg/mL had a successful outcome. Piperacillin estimated time above MIC at 20% separated those responding from those that did not (P = 0.019).展开更多
Pseudomonas aeruginosa is a leading cause of hospital infections and is intrinsically resistant to most antibiotics. Emergence of multidrug resistant (MDR) strains has been reported in the world and poses a great chal...Pseudomonas aeruginosa is a leading cause of hospital infections and is intrinsically resistant to most antibiotics. Emergence of multidrug resistant (MDR) strains has been reported in the world and poses a great challenge in the management of infections associated with this species. While a substantial amount of research has been done on strains from most of other infection caused by this species in developed countries, little is known about the susceptibility profiles of strains recovered from African countries in general and Kenya in particular. Furthermore, there is paucity of data regarding strain, phenotype and genetic diversity of strains recoverable from wounds among patients in Kenya. The possible risk factors for acquisition of MDR strains and possible factors that could fuel clonal expansion in hospital and community settings remain undetermined. This cross-sectional study conducted in Tigoni Hospital, a rural area in Central Kenya sought to determine risk factors associated with carriage of MDR Pseudomonas aeruginosa in wounds among rural population. We also analyzed antimicrobial resistance profiles among these isolates. Prevalence of P. aeruginosa in wounds was 28% with 85 isolates recovered from wounds of 299 participants. Most antimicrobial resistance prevalence was recorded towards Ceftazidime (64%) and Cefepime (52%) while Piperacillin-tazobactam was the most effective antimicrobial agent with a resistance prevalence rate of 20%. Resistance towards new classes of aminoglycosides such as Gentamicin was at 45% while that towards Amikacin was at 40%. Compared to other related studies, relatively lower resistance towards Ciprofloxacin (25%) and Meropenem (40%) were recorded. Some of the risk factors identified for carriages of MDR strains were self-medication (p: 0.001, C.I: 3.01 - 8.86, O.R: 5.17) and non-completion of dosage (p: 0.12, C.I: 0.9 - 2.5, O.R: 1.5).展开更多
Pseudomonas aeruginosa is a major cause of nosocomial infections with high mortality rates. The organism is highly resistant to most classes of drugs used and can develop resistance during treatment. One of the resist...Pseudomonas aeruginosa is a major cause of nosocomial infections with high mortality rates. The organism is highly resistant to most classes of drugs used and can develop resistance during treatment. One of the resistance mechanisms of P. aeruginosais is Metallo-β-Lactamase (MBL) production. MBL producing P. aeruginosa is a major health concern given it’s resistance to almost all available drugs. The prevalence of this resistant strain is unknown since there is no standardized method for testing MBL production. This was a laboratory based cross-sectional prospective study that was carried out from September 2015 to March 2016 at Kenyatta National Hospital. Ninety-nine isolates of P. aeruginosa were collected during the period and tested for antimicrobial susceptibility and isolates found to be resistant to imipenem tested for MBL production. The results indicated high resistance of P. aeruginosa to commonly used drugs. Of the isolates tested 69.7% were resistant to piperacillin, 63.6% were resistant to aztreonam, 58.6% were resistant to levofloxacin, 55.6% were resistant to cefipime, 65.7% were resistant to ceftazidime, 68.7% were resistant to ticarcillin-clavulanate, 72.2% were resistant to meropenem, 64.9% were resistance to imipenem while 86.4% of urine isolates were resistant to ofloxacin. Of the isolates resistant to imipenem 87.3% were found to be MBL producers. In conclusion, P. aeruginosais highly resistant to the drugs currently is used for treatment and resistance to carbapenems is largely due to MBL production.展开更多
Pseudomonas aeruginosa (P. aeruginosa) frequently causes various infections, some of which are serious and require prompt medical detection and appropriate antibiotic selection. Although P. aeruginosa commonly exists ...Pseudomonas aeruginosa (P. aeruginosa) frequently causes various infections, some of which are serious and require prompt medical detection and appropriate antibiotic selection. Although P. aeruginosa commonly exists within the nasal cavity, meningitis or ventriculitis following transsphenoidal surgery to relieve P. aeruginosa has been reported only occasionally. However, as the endoscopic transnasal approach is more widely utilized for the suprasellar lesions, nosocomical P. aeruginosa infection associated with cerebrospinal fluid (CSF) leakage becomes more common in patients with panhypopituitarism who undergo transsphenoidal surgery. We report a case of a 36-year-old man with an intrasellar craniopharyngioma presenting with an acute obstructive hydrocephalus caused by P. aeruginosa ventriculitis following transsphenoidal surgery. Treatment with optimal antibiotics was initiated immediately after P. aeruginosa was recognized as the pathogen, and was continued for 3 months. After removal of the infected fascia and fat graft used for the closure of CSF leakage and sellar floor reconstruction, endoscopic third ventriculostomy was successfully performed to treat the obstructive hydrocephalus induced by the occlusion of the fourth ventricle outlet, resulting in a positive outcome. Although the obstructive hydrocephalus caused by P. aeruginosa is extremely rare, prompt detection and appropriate treatment should be required once P. aeruginosa ventriculitis happens.展开更多
The comparative effectiveness of remediating water polluted with crude oil, using environment-friendly bacteria (Pseudomonas aeruginosa) and fungi (Aspergillus niger) were investigated. The samples were separately tre...The comparative effectiveness of remediating water polluted with crude oil, using environment-friendly bacteria (Pseudomonas aeruginosa) and fungi (Aspergillus niger) were investigated. The samples were separately treated with Aspergillus niger and Pseudomonas aeruginosa. The bioremediation kinetic efficiency for these systems was studied. At the end of the bioremediation periods, the oil and grease content of the samples decreased from 47.0 mg/L in the untreated sample to 7.0 mg/L after 20 days when inoculated with bacteria while the sample inoculated with fungi decreased to 10.0 mg/L. Post analysis when inoculated with bacteria showed a fall in the value of the biological oxygen demand (BOD) from 73.84 mg/L to 33.28 mg/L after 20 days, while, the fungi inoculated sample showed a reduction from 73.84 mg/L to 38.48 mg/L. The biodegradation process with the bacteria was consistent with the pseudo-first-order model with a rate constant of 0.0891 day<sup>-1</sup>, while the biodegradation process with the fungi was consistent with the first order reaction model with a rate constant of 0.422 day<sup>-1</sup>. The degree of degradation after the 20<sup>th</sup> day of inoculation with Pseudomonas aeruginosa was 85.11%, while with Aspergillus niger was 78.72%. Thus, the results obtained showed that, Pseudomonas aeruginosa performed better than Aspergillus niger. The bioremediation data with fungi fitted the first-order model, while that of the bacteria fitted the pseudo-first-order model. Therefore, the data obtained in this study could be applied in the design of a bioremediation system for potential application to remediation of crude oil polluted water.展开更多
Pseudomonas aeruginosa (P. aeroginosa) is one of the opportunistic pathogens, which is the main cause of prevalent hospital infections worldwide. The aim of this study was to determine the prevalence of antibiotic res...Pseudomonas aeruginosa (P. aeroginosa) is one of the opportunistic pathogens, which is the main cause of prevalent hospital infections worldwide. The aim of this study was to determine the prevalence of antibiotic resistance pattern against P. aeroginosa from clinical samples in our population. This study was performed during March 2009 to September 2011. During this period 233 clinical isolated samples from hospital patients were examined. In these studies, different strains of P. aeroginosa were isolated from samples, then microbiologically tested. Bacterial susceptibility was performed by the disc-diffusion tests with Kirby Baur disc diffusion tests in Muller-Hinto environment. Our results showed maximum antibiotic resistance (99.5%) of P. aeruginosa against Trimetoprime Solfametoxasole and Ciprofloxacin (55.33%), Amikacin (61%), Imipenem (33%), which were identified as the most effective antibiotics in this study. In conclusion, indeed most Pseudomonas aeruginosa strains infections are treated as soon as possible due to their severe resistance against antibiotics. So, we have to apply an accurate antibiotic treatment discipline, according to the finding, based on antibiogram, in order to prevent its spread and also, monitoring and optimization of antimicrobial use should be considered carefully.展开更多
Backgrounds: Pseudomonas aeruginosa is a classic opportunistic pathogen with innate resistance to many antibiotics and disinfectants. The lung is a main target for colonization and infection by the bacteria either in ...Backgrounds: Pseudomonas aeruginosa is a classic opportunistic pathogen with innate resistance to many antibiotics and disinfectants. The lung is a main target for colonization and infection by the bacteria either in the context of a chronic, progressively deteriorating infectious and inflammatory pulmonary disease such as cystic fibrosis (CF) or in a more acute setting such as severe pneumonia in immunocompromised patients [1]. Aim and Objectives: To study the prevalence, virulence and the resistance pattern, phenotypic and genotypic characterization of P. aeruginosa from sputum samples. Materials and Methods: The present study was carried out with a total of 500 clinical sputum samples, which were received from patients, admitted to the various departments of Rajah Muthiah Medical College & Hospital, Annamalai University, Chidambaram. Result: Of the 500 samples subjected for isolation and identification of P. aeruginosa, 116 (23.20%) were positive. The isolated strains were tested for antibiotic sensitivity patterns. 93.10% of P. aeruginosa showed a maximum sensitivity to Ofloxacin, Norfloxacin and 86.20% of strains were highly resistant to Cefotaxime. The same isolates were also tested for phenotypic characterization of Extended Spectrum of Beta Lactamases by double disc synergy method against Cefotaxime and Clavulanic acid, according to the criteria of Hi-Media [2]. Of the resistant strains of P. aeruginosa isolated from sputum, 59% were positive for ESBL. The genotype characterization of ESBL P. aeruginosa showed 40% of CTX-M and 46.66% SHV gene. Conclusion: The present study strongly recommends for further checking of the antibiotic resistant strains of P. aeruginosa for phenotypic characterization of ESBL for effective treatment.展开更多
文摘Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospitalized in educational-therapeutic hospitals and were identified using standard microbiological tests.Then,the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method.The bacterial DNAs were extracted by the alkaline lysis method.Finally,the presence of exoU and exoY genes was evaluated by the PCR test.Results:In this study,47%,72%,29%,39%,40%,and 44%of the isolates were non-susceptible to piperacillin,aztreonam,ceftazidime,imipenem,tobramycin,and ciprofloxacin,respectively.In addition,95%and 93%of the clinical isolates carried the exoU and exoY genes.Blood and fecal isolates had both virulence genes,while only one wound isolate had neither genes.Meanwhile,all urinary isolates contained the exoY gene and only one isolate lacked the exoU gene.Also,88 isolates simultaneously had both exoU and exoY genes.Conclusions:High prevalence of exoU and exoY genes in this region indicates a significant role of typeⅢsecretion system in pathogenesis of Pseudomonas aeruginosa.The typeⅢsecretion system may be a suitable target to reduce the pathogenicity of this bacterium.
基金Supported by"973"Project(2008CB418003)The National Natural Science Fund(30700414)
文摘[Objective] The study aimed to discuss the effects of pH value on the growth metabolism of Microcystis aeruginosa and the phosphorus metabolism relationship with adnascent Pseudomonas.[Method] By the phosphorus uptake experiment of M.aeruginosa under different pH conditions(8.0-10.0) and the effect experiment on the phosphorus metabolism of M.aeruginosa and adnascent Pseudomonas under different pH conditions(7.0-9.0),the phosphorus uptake of M.aeruginosa in the short time and the growth curve of M.aeruginosa,the change of phosphorus concentration in the water,the change of total phosphorus content in M.aeruginosa in the longer time were measured.[Results] In the short time,pH value had the effects on the absorption phosphorus ability of M.aeruginosa.As pH value rose,the absorption phosphorus ability enhanced.During the longer time,the higher pH value was,the quicker the growth speed of M.aeruginosa was,and the better the growth situation was.M.aeruginosa had the ability of self regulation pH value and could use the phosphorus well in the water which was released from Pseudomonas.In the system of the algae,bacteria and water,the phosphorus in the bacteria played the role of phosphorus source which was released slowly.Though the phosphorus concentration was lower,it was favorable to the growth of algae.[Conclusions] pH value was the factor that affected the circle of the phosphorus element in the system of algae-bacteria-water.
基金supported by the National Key Research and Development Program of China(2018YFA0902100)the National Natural Science Foundation of China(22178262)the Tianjin Key Research and Development Program(23YFZCSN00110).
文摘The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,wherein the metabolic activities of microorganisms can transform toxic pesticides into compounds with lower or no toxicity.In this study,we obtained eight pesticide-degrading strains from pesticide-contaminated sites through continuous enrichment and screening.Four highly efficient pesticide-degrading strains(degradation ratios exceeding 80%)were identified.Among them,Pseudomonas sp.BL5 exhibited the strongest growth(exceeding 10^(9) CFU·ml^(-1))and outstanding degradation of benzene derivatives and chlorinated hydrocarbons at both laboratory and pilot scales,with degradation ratios exceeding 98%and 99.6%,respectively.This research provides new tools and insights for the bioremediation of pesticide-related pollutants.
基金supported by the China Postdoctoral Science Foundation(No.2022M720401)the Postdoctoral Research Foundation of Shunde Innovation School,University of Science and Technology Beijing(No.2022BH007)the National Natural Science Foundation of China(No.52301074).
文摘To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics,corrosion behavior(morphology observation and electrochemical properties),and antimicrobial performance of Fe_(x)Cu_((1−x))CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa.The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties.Results revealed that all Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs exhibited an FCC(face centered cubic)phase,with significant grain refinement observed in Fe_(0.75)Cu_(0.25)CoNiCrMn HEA.Electrochemical tests indicated that Fe_(0.75)Cu_(0.25)CoNiCrMn HEA demonstrated lower corrosion current density(i_(corr))and pitting potential(E_(pit))compared to other Fe_(x)Cu_((1−x))CoNiCrMn HEAs in P.aeruginosa-inoculated medium,exhibiting superior resistance to MIC.Anti-microbial tests showed that after 14 d of immersion,Fe_(0.75)Cu_(0.25)CoNiCrMn achieved an antibacterial rate of 89.5%,effectively inhibiting the adhesion and biofilm formation of P.aeruginosa,thereby achieving resistance to MIC.
文摘Objective:To study characteristics of phospholipases C(PLCs),their importance for producing microorganisms us well us the potential of their use for industrial purposes.Methods:PLC from Bacillus cereus(B.cereus) D101 was selected as an example of Gram-positive PLCs and PLC from Pseudomanas aeruginosa(P.aeruginosa) D183 of Gram-negative ones.Enzymes were partially purified by ammonium sulfate precipitation followed by membrane dialysis.Partially purified preparations were used to study effect of different factors on activities as well as in substrate specificity tests which were conducted using a turbidimetric assay method.Results:Maximum activity was at pH 7 and 8 and 40 ℃ for P.aeruginosa PLC,and pH 8-10 and 37 ℃ for B.cereus PLC.Both PLCs were inhibited by Pi at 5 mM or higher,whereas,PLC from B.cereus only was inhibited by EDTA.Activity of P.aeruginosa PLC was not affected by removing Zn^(2+) ions from reaction mixture or their replacement with Ca^(2+),Ba^(2+),Mg^(2+) or Mn^(2+)ions.Vis-a-vis,activity of B.cereus PLC was found to be metal ion dependent PLCs from both isolates were relatively thermostable and showed maximum affinity toward phosphatidylcholine.Sphingomyelin and phosphatidylethanolamine were not good substrates and phosphatidylinositol,phosphatidylserine,phosphatidylglycerol and cardiolipin could be considered nonsubstrates.Conclusions:Human body physiological conditions could favor activity of P.aeruginosa and B.cereus PLCs.These enzymes may participate in phosphate scavenging and virulence of producing isolates but not in autolysis.PLCs from both isolates are potential candidates for industrial use.
基金This research was supported by the association "Vaincre la Mucoviscidose" of France
文摘Objective Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type Ⅲ secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions. Specialized bacterial chaperones are required for effective secretion of some effectors. To identify the chaperone of ExoS, the representative effector secreted by the TTSS of P aeruginosa, we analyzed the role of a postulated chaperone termed Orfl. Methods By allelic exchange, we constructed the mutant with the deletion of gene Orfl. Analysis of secreted and cell-associated fractions was performed by SDS-PAGE and Western blotting. Using strain expressing in trans Orfl, tagged by V5 polypeptide and histidine, protein-protein interaction was determined by affinity resin pull-down assay in combination with MALDI-TOF The role of Orfl in the expression of exoS was evaluated by gene reporter analysis. Results Pull-down assay showed that Orfl binds to ExoS and ExoT. Secretion profile analysis showed that Orfl was necessary for the optimal secretion of ExoS and ExoT. However, Orfl had no effect on the expression of exoS. Conclusion Orfl is important for the secretion of ExoS probably by maintaining ExoS in a secretion-competent conformation. We propose to name Orfl as SpcS for "specific Pseudomonas chaperone for ExoS".
基金Project(108100) supported by the Key Program for Science and Technology Research of Ministry of Education of ChinaProjects(50978087, 50908081) supported by the National Natural Science Foundation of China+1 种基金Project(531107011019) supported by the Hunan University Graduate Education Innovation Program, ChinaProject(CX2010B157) supported by the Hunan Provincial Innovation Foundation for Postgraduate students, China
文摘Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3- and Mg2+ concentrations as the variables. Meanwhile, fed-batch fermentation experiments were conducted. The results show that the three variables are closely related to rhamnolipid production. The optimal cultivation conditions are of 6.4 g/L NaNO3 , 3.1 g/L MgSO4 at 32 ℃, with the maximum rhamnolipid production of 6.6 g/L. The results of fed-batch fermentation experiments show that feeding the oil in two batches can enhance rhamnolipid production. The best time interval is 72 h with the maximum rhamnolipid production of 8.5 g/L. The data are potentially useful for mass production of rhamnolipid on oil waste with this bacterium.
文摘Background:Azadirachta indica(A.indica),commonly known as neem,is a widely distributed medicinal plant in Asia and Africa and is well known to have a wide spectrum of biological activity.A.indica is considered a skin food that was traditionally used in different cultures to treat a wide range of skin disorders.A.indica was reported to possess antibacterial activity against Pseudomonas aeruginosa(P.aeruginosa)which is considered the most common biofilm model organism.This study aims to investigate the ability of A.indica cultivated in Egypt to inhibit/reduce the biofilm formation by P.aeruginosa.Methods:The microtiter plate assay was used to evaluate the anti-biofilm activity of neem,cultivated in Egypt,leaves against P.aeruginosa as well as the ability to reduce the activity of P.aeruginosa.To investigate the phytocompounds responsible for their bioactivity and to explore potential interactions between their bioactive components and one of the quorum-sensing regulatory proteins of P.aeruginosa involved in biofilm formation,liquid chromatography-mass spectrometric and molecular docking studies were done.Results:Results showed that methanol extract of leaves can reduce the formation of P.aeruginosa biofilm at lower concentrations than those reported in other regions with 1.25 mg/mL as the optimum concentration.The two-way analysis of variance revealed the significance of the extract effect and its concentration on the reduction of biofilm formation(P<0.05).Liquid chromatography-mass spectrometric study revealed the presence of fourteen compounds that belong to limonoids and flavonoids.Molecular docking analysis against LasR,the quorum-sensing regulatory protein,of P.aeruginosa supported these findings.Nimbolinin,a limonoid,has achieved the highest Libdock score of 138.769.Conclusion:It was concluded that A.indica,cultivated in Egypt,leaves can target LasR as a new mechanism of action for biofilm control by A.indica and therefore could be a good source of leads for anti-biofilm medicine.
基金supported by Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(No.CI2021B015)the Fundamental Research Funds for the Central Public Welfare Research Institutes(JJPY2022017).
文摘Background:Pudilan Xiaoyan Oral Liquid(PDL)is a Chinese patent medicine with notable pharmacological properties,including anti-inflammatory and antibacterial effects.Drug-resistant Pseudomonas aeruginosa infection is a common and refractory bacterial infection in clinical practice.Due to its high drug resistance,it brings great challenges to treatment.This study aimed to assess the therapeutic efficacy of PDL in a murine model of pneumonia induced by drug-resistant Pseudomonas aeruginosa.Methods:Three different doses of PDL(11 mL/kg/d,5.5 mL/kg/d,2.75 mL/kg/d)were used to observe lung tissue pathology and inflammatory cytokine levels in pneumonia mouse models induced by multidrug-resistant Pseudomonas aeruginosa(MDR-PA).Additionally,the protective efficacy of PDL against mortality in infected mice was evaluated using a death model caused by MDR-PA.Finally sub-MIC concentration of levofloxacin was used to induce drug-resistant mice pneumonia model to evaluate the role of PDL in reversing drug resistance.Experimental data are expressed as mean±standard deviation.Statistical significance was determined by one-way analysis of variance followed by Tukey’s multiple-comparisons test.Results:Treatment effect of PDL on MDR-PA pneumonia:the medium and small doses of PDL can significantly reduce the lung index of multi-drug resistant bacteria infected pneumonia model mice(P<0.05),the lung index inhibition rates for these groups were 55.09%and 58.43%,and improve the degree of lung tissue lesions of mice;The expression of serum cytokines keratinocyte chemoattractant,tumor necrosis factor-αand monocyte chemoattractant protein-1 could be decreased in the three dosage groups of PDL(P<0.01).PDL treatment not only lowered the mortality but also extended the survival duration in mice infected with MDR-PA.It was found after sub-MIC concentration of levofloxacin induced resistance of Pseudomonas aeruginosa to pneumonia in mice.Compared with the model group,the lung index of mice in high and medium PDL doses was significantly reduced(P<0.05),with inhibition rates of 32.16%and 37.73%,respectively.Conclusion:PDL demonstrates protective effects against MDR-PA infection pneumonia,notably decreasing serum inflammatory factor levels.It shows promise in mitigating antibiotic resistance and offers potential for treating pneumonia resulting from Pseudomonas aeruginosa resistance.
文摘Objective:Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of nosocomial infections. Currently a notable increase in the prevalence of multidrug-resistant P.aeruginosa worldwide has been reported in hospitalized patients and was associated with high morbidity and mortality.Methods:A retrospective laboratory based analysis regarding the spectrum and distribution of P.aeruginosa from a wide range of clinical samples in Hospital Universiti Sains Malaysia since January 2003 to December 2007 was done.Results: Altogether,there were 2 308 clinical isolates analyzed.The main sources of P.aeruginosa were from swab,respiratory,urine and blood specimens which accounted for 28.2%,21.8%,13.2%and 12.8% respectively.Results showed significant reduction in percentage of resistant towards three antibiotic namely ciprofloxacin,ceftazidime and imipenem.However the percentage of pan-resistant P.aeruginosa increased steadily over these years.Conclusion:This data is helpful to the clinician in guiding the choice of appropriate antibiotic to treat P.aeruginosa infection.At the same time,it warrants a more aggressive infection control activity to be implemented to control the spread of pan resistant strain in this centre.
文摘Objective: To evaluate the drug susceptibility profiles and the frequency of beta-lactamase encoding genes in Pseudomonas aeruginosa (P. aeruginosa) obtained from burn patients. Methods: Totally 93 non-duplicate clinical isolates of P. aeruginosa were recovered from burn patients of Taleghani Burn Hospital of Ahvaz. Antibiotic susceptibility testing was conducted by disk diffusion method according to the CLSI 2017 recommendations. PCR assay was performed by to find beta-lactamase encoding genes. Results: In this study, most clinical specimen was obtained via wound swabs [65 (69.9%)], followed by blood [14 (15.1%)] and biopsy (7 (7.5%))Forty-two (45.16%) patients were male and 51(54.84%) were female. High resistance was observed for most of antibiotics especially for gentamicin and ciprofloxacin (Up to 85%), whereas the highest susceptibility was reported for colistin (100.0%), followed by ceftazidime (66.7%). According to PCR results, 16.1% (15), 9.7% (9) and 14.0% (13) of isolates carried blaDHA, blaVEB and blaGES genes, respectively. It also revealed that the blaVEB gene was found to coexist within 2 isolates (2.2%). Conclusions: Antibacterial resistance is high among P. aeruginosa isolates. Colistin is highly active against multi-drug resistant P. aeruginosa isolates. Antimicrobial susceptibility testing can confine indiscriminate uses of antibiotics and resistance increase, and can improve management of treatment.
文摘Limited research has suggested iron oxide nanoparticles (FeNP) have an inhibitory effect against several different genera of bacteria: Staphylococcus, Bacillus and Pseudomonas spp. In this study we looked at the effect of three different sets of Fe3O4 nanoparticles (FeNPs) on the development of Pseudomonas aeruginosa PAO1 biofilms. Two of the tested NPs were SPIONs (Superparamagnetic Iron Oxide Nanoparticles). Exposure of cells to the SPIONs at concentrations up to 200 μg/ml resulted in an increase in biofilm biomass by 16 h under static conditions and a corresponding increase in cell density in the bulk liquid. In contrast, these biofilms had decreased levels of extracellular DNA (eDNA). Fe(II) levels in the supernatants of biofilms formed in the presence of FeNPs exceeded 100 μM compared with 20 μM in control media without cells. Spent cell supernatants had little effect on Fe(II) levels. Cells also had an effect on the aggregation behavior of these nanoparticles. SPIONs incubated with cells exhibited a decrease in the number and size of FeNP aggregates visible using light microscopy. SPIONs resuspended in fresh media or spent culture supernatants formed large aggregates visible in the light microscope upon exposure to a supermagnet;and could be pelleted magnetically in microtitre plate wells. In contrast, SPION FeNPs incubated with cells were unaffected by exposure to the supermagnet and could not be pelleted. The results of this study indicate a need to reconsider the effects of FeNPs on bacterial growth and biofilm formation and the effect the bacterial cells may have on the use and recovery of SPIONs.
文摘Pseudomonas aeruginosa remains an important pathogen. Our purpose was to determine the minimum inhibitory con-centration (MIC) and pharmacodynamic (PD) parameters predicting a positive response to therapy with piperacil-lin-tazobactam. Medical records were retrospectively reviewed at 3 centers. Data were recorded to assess age, type of disease, renal function, weight (body mass), MIC, antimicrobial treatment, and clinical outcome. Success was response to piperacillin-tazobactam alone, or in combination with another active agent;failure was lack of response. Of 78 eva-luable patients, 63 responded (7 UTI;56 non-UTI) and 15 did not;26 responding received combination therapy and 37 monotherapy. Piperacillin-tazobactam treatment was successful in 53 of 63 of non-UTI disease with a MIC of ≤64/4 μg/mL, but in only 3 of 7 with a MIC of >64/4 μg/mL (P = 0.023);overall 9 of 10 infections by strains with MICs = 32 - 64 μg/mL had a successful outcome. Piperacillin estimated time above MIC at 20% separated those responding from those that did not (P = 0.019).
文摘Pseudomonas aeruginosa is a leading cause of hospital infections and is intrinsically resistant to most antibiotics. Emergence of multidrug resistant (MDR) strains has been reported in the world and poses a great challenge in the management of infections associated with this species. While a substantial amount of research has been done on strains from most of other infection caused by this species in developed countries, little is known about the susceptibility profiles of strains recovered from African countries in general and Kenya in particular. Furthermore, there is paucity of data regarding strain, phenotype and genetic diversity of strains recoverable from wounds among patients in Kenya. The possible risk factors for acquisition of MDR strains and possible factors that could fuel clonal expansion in hospital and community settings remain undetermined. This cross-sectional study conducted in Tigoni Hospital, a rural area in Central Kenya sought to determine risk factors associated with carriage of MDR Pseudomonas aeruginosa in wounds among rural population. We also analyzed antimicrobial resistance profiles among these isolates. Prevalence of P. aeruginosa in wounds was 28% with 85 isolates recovered from wounds of 299 participants. Most antimicrobial resistance prevalence was recorded towards Ceftazidime (64%) and Cefepime (52%) while Piperacillin-tazobactam was the most effective antimicrobial agent with a resistance prevalence rate of 20%. Resistance towards new classes of aminoglycosides such as Gentamicin was at 45% while that towards Amikacin was at 40%. Compared to other related studies, relatively lower resistance towards Ciprofloxacin (25%) and Meropenem (40%) were recorded. Some of the risk factors identified for carriages of MDR strains were self-medication (p: 0.001, C.I: 3.01 - 8.86, O.R: 5.17) and non-completion of dosage (p: 0.12, C.I: 0.9 - 2.5, O.R: 1.5).
文摘Pseudomonas aeruginosa is a major cause of nosocomial infections with high mortality rates. The organism is highly resistant to most classes of drugs used and can develop resistance during treatment. One of the resistance mechanisms of P. aeruginosais is Metallo-β-Lactamase (MBL) production. MBL producing P. aeruginosa is a major health concern given it’s resistance to almost all available drugs. The prevalence of this resistant strain is unknown since there is no standardized method for testing MBL production. This was a laboratory based cross-sectional prospective study that was carried out from September 2015 to March 2016 at Kenyatta National Hospital. Ninety-nine isolates of P. aeruginosa were collected during the period and tested for antimicrobial susceptibility and isolates found to be resistant to imipenem tested for MBL production. The results indicated high resistance of P. aeruginosa to commonly used drugs. Of the isolates tested 69.7% were resistant to piperacillin, 63.6% were resistant to aztreonam, 58.6% were resistant to levofloxacin, 55.6% were resistant to cefipime, 65.7% were resistant to ceftazidime, 68.7% were resistant to ticarcillin-clavulanate, 72.2% were resistant to meropenem, 64.9% were resistance to imipenem while 86.4% of urine isolates were resistant to ofloxacin. Of the isolates resistant to imipenem 87.3% were found to be MBL producers. In conclusion, P. aeruginosais highly resistant to the drugs currently is used for treatment and resistance to carbapenems is largely due to MBL production.
文摘Pseudomonas aeruginosa (P. aeruginosa) frequently causes various infections, some of which are serious and require prompt medical detection and appropriate antibiotic selection. Although P. aeruginosa commonly exists within the nasal cavity, meningitis or ventriculitis following transsphenoidal surgery to relieve P. aeruginosa has been reported only occasionally. However, as the endoscopic transnasal approach is more widely utilized for the suprasellar lesions, nosocomical P. aeruginosa infection associated with cerebrospinal fluid (CSF) leakage becomes more common in patients with panhypopituitarism who undergo transsphenoidal surgery. We report a case of a 36-year-old man with an intrasellar craniopharyngioma presenting with an acute obstructive hydrocephalus caused by P. aeruginosa ventriculitis following transsphenoidal surgery. Treatment with optimal antibiotics was initiated immediately after P. aeruginosa was recognized as the pathogen, and was continued for 3 months. After removal of the infected fascia and fat graft used for the closure of CSF leakage and sellar floor reconstruction, endoscopic third ventriculostomy was successfully performed to treat the obstructive hydrocephalus induced by the occlusion of the fourth ventricle outlet, resulting in a positive outcome. Although the obstructive hydrocephalus caused by P. aeruginosa is extremely rare, prompt detection and appropriate treatment should be required once P. aeruginosa ventriculitis happens.
文摘The comparative effectiveness of remediating water polluted with crude oil, using environment-friendly bacteria (Pseudomonas aeruginosa) and fungi (Aspergillus niger) were investigated. The samples were separately treated with Aspergillus niger and Pseudomonas aeruginosa. The bioremediation kinetic efficiency for these systems was studied. At the end of the bioremediation periods, the oil and grease content of the samples decreased from 47.0 mg/L in the untreated sample to 7.0 mg/L after 20 days when inoculated with bacteria while the sample inoculated with fungi decreased to 10.0 mg/L. Post analysis when inoculated with bacteria showed a fall in the value of the biological oxygen demand (BOD) from 73.84 mg/L to 33.28 mg/L after 20 days, while, the fungi inoculated sample showed a reduction from 73.84 mg/L to 38.48 mg/L. The biodegradation process with the bacteria was consistent with the pseudo-first-order model with a rate constant of 0.0891 day<sup>-1</sup>, while the biodegradation process with the fungi was consistent with the first order reaction model with a rate constant of 0.422 day<sup>-1</sup>. The degree of degradation after the 20<sup>th</sup> day of inoculation with Pseudomonas aeruginosa was 85.11%, while with Aspergillus niger was 78.72%. Thus, the results obtained showed that, Pseudomonas aeruginosa performed better than Aspergillus niger. The bioremediation data with fungi fitted the first-order model, while that of the bacteria fitted the pseudo-first-order model. Therefore, the data obtained in this study could be applied in the design of a bioremediation system for potential application to remediation of crude oil polluted water.
文摘Pseudomonas aeruginosa (P. aeroginosa) is one of the opportunistic pathogens, which is the main cause of prevalent hospital infections worldwide. The aim of this study was to determine the prevalence of antibiotic resistance pattern against P. aeroginosa from clinical samples in our population. This study was performed during March 2009 to September 2011. During this period 233 clinical isolated samples from hospital patients were examined. In these studies, different strains of P. aeroginosa were isolated from samples, then microbiologically tested. Bacterial susceptibility was performed by the disc-diffusion tests with Kirby Baur disc diffusion tests in Muller-Hinto environment. Our results showed maximum antibiotic resistance (99.5%) of P. aeruginosa against Trimetoprime Solfametoxasole and Ciprofloxacin (55.33%), Amikacin (61%), Imipenem (33%), which were identified as the most effective antibiotics in this study. In conclusion, indeed most Pseudomonas aeruginosa strains infections are treated as soon as possible due to their severe resistance against antibiotics. So, we have to apply an accurate antibiotic treatment discipline, according to the finding, based on antibiogram, in order to prevent its spread and also, monitoring and optimization of antimicrobial use should be considered carefully.
文摘Backgrounds: Pseudomonas aeruginosa is a classic opportunistic pathogen with innate resistance to many antibiotics and disinfectants. The lung is a main target for colonization and infection by the bacteria either in the context of a chronic, progressively deteriorating infectious and inflammatory pulmonary disease such as cystic fibrosis (CF) or in a more acute setting such as severe pneumonia in immunocompromised patients [1]. Aim and Objectives: To study the prevalence, virulence and the resistance pattern, phenotypic and genotypic characterization of P. aeruginosa from sputum samples. Materials and Methods: The present study was carried out with a total of 500 clinical sputum samples, which were received from patients, admitted to the various departments of Rajah Muthiah Medical College & Hospital, Annamalai University, Chidambaram. Result: Of the 500 samples subjected for isolation and identification of P. aeruginosa, 116 (23.20%) were positive. The isolated strains were tested for antibiotic sensitivity patterns. 93.10% of P. aeruginosa showed a maximum sensitivity to Ofloxacin, Norfloxacin and 86.20% of strains were highly resistant to Cefotaxime. The same isolates were also tested for phenotypic characterization of Extended Spectrum of Beta Lactamases by double disc synergy method against Cefotaxime and Clavulanic acid, according to the criteria of Hi-Media [2]. Of the resistant strains of P. aeruginosa isolated from sputum, 59% were positive for ESBL. The genotype characterization of ESBL P. aeruginosa showed 40% of CTX-M and 46.66% SHV gene. Conclusion: The present study strongly recommends for further checking of the antibiotic resistant strains of P. aeruginosa for phenotypic characterization of ESBL for effective treatment.