Market garden products can carry several types of microorganisms, and their consumption is the source of many cases of food poisoning. This work aimed to improve food safety in Benin. In characterizing strains of K. p...Market garden products can carry several types of microorganisms, and their consumption is the source of many cases of food poisoning. This work aimed to improve food safety in Benin. In characterizing strains of K. pneumoniae and fluorescent Pseudomonas spp. at the biochemical and molecular level, the target was to identify contaminated watering water and garden products sold during Cotonou in both the dry and rainy seasons. A total of 164 samples of market garden products and 22 samples of watering water were investigated. The results showed that 5.91% of market garden products and watering water were contaminated by K. pneumoniae and 20.43% by fluorescent Pseudomonas spp. During the dry season, cabbage was most contaminated by fluorescent Pseudomonas spp. (50%). Pool water was more contaminated with K. pneumoniae (17%). All isolated strains were resistant to both amoxicillin and penicillin. All strains of K. pneumoniae and fluorescent Pseudomonas spp. were not resistant to imipenem, and 22% of them produced penicillinase. Among the 49 strains producing penicillinase isolated, 64.29% and 21.43% carried bla<sub>TEM</sub> and bla<sub>SHV</sub> respectively while 14.28% carried bla<sub>CTX-M</sub> genes. In light of the previously-developed results and considering the importance of horticultural products in Beninese food habits, we must improve national awareness of the risk for foodborne illness.展开更多
A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast AIgeria).Thr...A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast AIgeria).Three major bacterial groups were cultured (total aerobic, enterobacteria, and staphylococci) from 14 specimens of cockroaches, and antibiotic susceptibility was tested for both Staphylococcus and Pseudomonas isolates. Culturing showed that the total bacterial load of cockroaches from different households were comparable (P〈0.001) and enterobacteria were the predominant colonizers of the insect surface, with a bacterial load of (2.1×10^5 CFU/insect), whereas the staphylococci group was the minority. Twenty-eight bacterial species were isolated, and susceptibility patterns showed that most of the staphylococci isolates were highly susceptible to chloramphenicol, gentamycin, pristinamycin, ofloxacin, clindamycin, and vancomycin; however, Pseudomonas strains exhibited resistance to amoxicillin/clavulanic acid, imipenem, and the second-generation antibiotic cephalosporin cefuroxime.展开更多
When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-p...When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave ACC to form a-ketobutyrate and ammonium, thereby lowering levels of ethylene. The aim of this study was to isolate and characterize ACC deaminase-producing bacteria from the rhizosphere of salt-stressed canola (Brassica napus L.). Out of 105 random bacterial isolates, 15 were able to utilize ACC as the sole source of nitrogen. These 15 isolates were also positive for indole acetic acid (IAA) production. Phylogenetic analysis based on partial 16S rDNA sequences showed that all isolates belonged to fluorescent Pseudomonas spp. In the canola rhizosphere investigated in this study, Pseudomonas fluorescens was the dominant ACC deaminase-producing species. Cluster analysis based on BOX-AIR-based repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) patterns suggested a high degree of genetic variability in ACC deaminase-producing P. fluorescens strains. The presence of indigenous ACC-degrading bacteria in the rhizosphere of canola grown in saline soils indicates that these bacteria may contribute to salinity tolerance.展开更多
Plant growth promontory Pseudomonas strains were isolated from root nodules of five plant species, viz., Trifolium pretense, Cicer arietinum, Amaranthus polygamus, Vigna mungo, and Trigonella foenum;that plants were d...Plant growth promontory Pseudomonas strains were isolated from root nodules of five plant species, viz., Trifolium pretense, Cicer arietinum, Amaranthus polygamus, Vigna mungo, and Trigonella foenum;that plants were denizen of Shekhawati region of Rajasthan. A total of 8 bacterial isolates were evaluated for growth promotion using PGP properties. Partial 16S rDNA sequencing data showed that these 8 bacterial isolates belonged to genus Pseudomonas. MEGA 4.0.2, software was used to construct a neighbor joining tree by employing boot strap method. Result exhibited significant diversity among recovered Pseudomonas strains.展开更多
Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of ...Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.展开更多
Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported....Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.展开更多
The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,w...The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,wherein the metabolic activities of microorganisms can transform toxic pesticides into compounds with lower or no toxicity.In this study,we obtained eight pesticide-degrading strains from pesticide-contaminated sites through continuous enrichment and screening.Four highly efficient pesticide-degrading strains(degradation ratios exceeding 80%)were identified.Among them,Pseudomonas sp.BL5 exhibited the strongest growth(exceeding 10^(9) CFU·ml^(-1))and outstanding degradation of benzene derivatives and chlorinated hydrocarbons at both laboratory and pilot scales,with degradation ratios exceeding 98%and 99.6%,respectively.This research provides new tools and insights for the bioremediation of pesticide-related pollutants.展开更多
Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resi...Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.展开更多
Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation w...Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation with nutrient regimes.However,the impact of key components of nutrients,especially dissolved organic nitrogen(DON),on the blooms of Karenia spp.is not clear.Quantitative research is still lacking.In this study,the cruise observations,field mesocosm-flask culture experiments,and a multinitrogen-tri-phytoplankton-detritus model(NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp.in the East China Sea.It has a synchronism rhythm of diatom-P.donghaienseKarenia spp.-diatom loop in the field culture experiment,which is consistent with the results of the cruise observation.The results showed that the processes of terrigenous DON(TeDON) and dissolved inorganic nitrogen(DIN:NO_(3)^(-)-N,NH_(4)^(+)-N) absorption promoted P.donghaiense to become the dominant algae in the community;whereas the processes of DON from P.donghaiense absorption promoted Karenia spp.to become the dominant algae in ambient DIN exhaustion.In addition,the three-dimensional fluorescence components of humus C,tyrosine and fulvic acid can indicate the processes of growth and extinction of P.donghaiense and Karenia spp.,respectively.This study infers that P.donghaiense and Karenia spp.regime shift mechanism associated with the nutrient regime in coastal waters,which provides a scientific basis for the environmental management of coastal eco system health.展开更多
To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics...To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics,corrosion behavior(morphology observation and electrochemical properties),and antimicrobial performance of Fe_(x)Cu_((1−x))CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa.The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties.Results revealed that all Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs exhibited an FCC(face centered cubic)phase,with significant grain refinement observed in Fe_(0.75)Cu_(0.25)CoNiCrMn HEA.Electrochemical tests indicated that Fe_(0.75)Cu_(0.25)CoNiCrMn HEA demonstrated lower corrosion current density(i_(corr))and pitting potential(E_(pit))compared to other Fe_(x)Cu_((1−x))CoNiCrMn HEAs in P.aeruginosa-inoculated medium,exhibiting superior resistance to MIC.Anti-microbial tests showed that after 14 d of immersion,Fe_(0.75)Cu_(0.25)CoNiCrMn achieved an antibacterial rate of 89.5%,effectively inhibiting the adhesion and biofilm formation of P.aeruginosa,thereby achieving resistance to MIC.展开更多
Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms ...Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms of Fragaria spp. from January 2021 to February 2022. The plant was introduced in Cameroon in 2018. There are 13 varieties of Fragaria spp. currently cultivated. Among these 13 varieties, eleven are hybrids of Fragaria x ananassa (“Amiga”, “Amine”, “Camarosa”, “Chandler”, “Charlotte”, “Elsanta”, “Gariguette”, “Madame Moutot”, “Ostara”, “Ruby gem” and “San Andreas”), and two of the hybrids of Fragaria vesca (“Maestro” and “Mara des bois”). The cropping system, irrigation system, and type of fertilizers applied differ from one strawberry farm to another. Biofertilizers (such as mycorrhizal), inorganic and organic fertilizers are actually used to improve production. The potential annual production of strawberries from January 2021 to February 2022, estimated based on the survey data, was 21.216 tons for all growers. Among these eight production farms, the Lolodorf BIO Farm presents 6000 kg (six tons) of strawberries and 100,000 stolons (seedlings) produced, from seven varieties of Fragaria spp. cultivated, with 6 varieties which are hybrids variety Fragaria x ananassa (“Amiga”, “Amine”, “Chandler”, “Gariguette”, “Madame Moutot”, and “Ruby gem”), and one which is a hybrid of Fragaria vesca (“Mara des bois”). Certain diseases were also observed and recorded depending on the growing areas.展开更多
The study was conducted to identify Aeromonas spp.and Vibrio spp.from fresh Pangasius fish(n=153)in Cambodia and test their antimicrobial susceptibility to antibiotics.The samples were collected from different wet mar...The study was conducted to identify Aeromonas spp.and Vibrio spp.from fresh Pangasius fish(n=153)in Cambodia and test their antimicrobial susceptibility to antibiotics.The samples were collected from different wet markets of Phnom Penh city and Kampong Thom,and Siem Reap provinces.The bacteria were isolated by using selective medium and their AMR(Antimicrobial Resistance)profile was tested by API 20E technique,respectively.Susceptibility profile was determined for seven antibiotics commonly used.The Vibrio spp.(34.64%,n=53)was found to be higher than Aeromonas spp.(24.83%,n=38).Four Vibrio and four Aeromonas species were identified where V.parahaemolyticus(57%,n=30)was the highest,followed by V.cholerae(38%,n=20),V.fluvialis(3.8%,n=2)and V.aglinolyticus(1.9%,n=1),whereas A.hydrophila(47%,n=18)was the highest,followed by A.hydrophila/caviae(45%,n=17),A.sobria(5%,n=2),A.caviae(2.6%,n=1).All the species presented high multi-resistance to the tested antibiotics.The antibiotic susceptibility profile to ampicillin(74%-100%),ciprofloxacin(7%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(7%-100%),erythromycin(10%-100%)and colistin sulphate(33%-100%)was revealed resistance level in Aeromonas spp.whereas few species of Vibrio spp.resistant to ampicillin(43%-100%),ciprofloxacin(14%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(20%-100%),erythromycin(29%-100%),colistin sulphate(33%-100%)were also identified.The results revealed these Aeromonas spp.and Vibrio spp.are potentially reservoirs of antibiotic resistance genes.MDR(Multidrug Resistance)was widespread among the samples isolated.That is a high-risk source of contamination since those pathogens and antimicrobials are often used.Our findings highlight that the aquatic environment and fresh Pangasius fish act as reservoirs of AMR Aeromonas spp.and Vibrio spp.which underline the need for a judicious use of antimicrobials and timely surveillance of AMR in aquaculture.Overall,the findings of our study indicated the presence of A.hydrophila,A.hydrophila/caviae,A.caviae,A.sobria,V.parahaemolyticus,V.cholerae,V.alginolyticus and V.fluvialis and high MDR.This result will allow us to identify the potential risk over circulating isolates in animal health and public health and the spread through the food chain offering supports for appropriate sanitary actions.展开更多
BACKGROUND Neuropathic pain(NP)is the primary symptom of various neurological condi-tions.Patients with NP often experience mood disorders,particularly depression and anxiety,that can severely affect their normal live...BACKGROUND Neuropathic pain(NP)is the primary symptom of various neurological condi-tions.Patients with NP often experience mood disorders,particularly depression and anxiety,that can severely affect their normal lives.Microglial cells are as-sociated with NP.Excessive inflammatory responses,especially the secretion of large amounts of pro-inflammatory cytokines,ultimately lead to neuroinflam-mation.Microglial pyroptosis is a newly discovered form of inflammatory cell death associated with immune responses and inflammation-related diseases of the central nervous system.METHODS Two models,an in vitro lipopolysaccharide(LPS)-stimulated microglial cell model and a selective nerve injury model using BTX-A and SPP1 knockdown treatments,were used.Key proteins in the pyroptosis signaling pathway,NLRP3-GSDMD,were assessed using western blotting,real-time quantitative polymerase chain reaction,and immunofluorescence.Inflammatory factors[interleukin(IL)-6,IL-1β,and tumor necrosis factor(TNF)-α]were assessed using enzyme-linked immuno-sorbent assay.We also evaluated microglial cell proliferation and apoptosis.Furthermore,we measured pain sensation by assessing the delayed hind paw withdrawal latency using thermal stimulation.RESULTS The expression levels of ACS and GSDMD-N and the mRNA expression of TNF-α,IL-6,and IL-1βwere enhanced in LPS-treated microglia.Furthermore,SPP1 expression was also induced in LPS-treated microglia.Notably,BTX-A inhibited SPP1 mRNA and protein expression in the LPS-treated microglia.Additionally,depletion of SPP1 or BTX-A inhibited cell viability and induced apoptosis in LPS-treated microglia,whereas co-treatment with BTX-A enhanced the effect of SPP1 short hairpin(sh)RNA in LPS-treated microglia.Finally,SPP1 depletion or BTX-A treatment reduced the levels of GSDMD-N,NLPRP3,and ASC and suppressed the production of inflammatory factors.CONCLUSION Notably,BTX-A therapy and SPP1 shRNA enhance microglial proliferation and apoptosis and inhibit microglial death.It improves pain perception and inhibits microglial activation in rats with selective nerve pain.展开更多
BACKGROUND The clinical incidence of spinal infection is gradually increasing,and its onset is insidious,easily leading to missed diagnosis and misdiagnosis,which may lead to serious complications such as nervous syst...BACKGROUND The clinical incidence of spinal infection is gradually increasing,and its onset is insidious,easily leading to missed diagnosis and misdiagnosis,which may lead to serious complications such as nervous system dysfunction,spinal instability and/or deformity,and cause a huge burden on society and families.Early identification of the causative agent and precision medicine will greatly reduce the suffering of patients.At present,the main pathogenic bacteria that cause spinal infection are Staphylococcus aureus,Streptococcus,Pneumococcus,Escherichia coli,and Klebsiella.There are no reports of spinal infection caused by Pseudomonas fluorescens.CASE SUMMARY We report a 32-year-old female patient with spinal infection.She presented with flank pain,initially thought to be bone metastases or bone tuberculosis,and had a family background of tumors.Her clinical features and changes in imaging and laboratory tests led to the suspicion of thoracic spine infection.Histopathology of the lesion showed inflammation,tissue culture of the lesion was negative several times,and the possible pathogen-Pseudomonas fluorescens was found after gene sequencing of the lesion.The patient recovered completely after a full course of antibiotic treatment.CONCLUSION This report increases the range of pathogens involved in spinal infections,highlights the unique advantages of gene sequencing technology in difficult-todiagnose diseases,and validates conservative treatment with a full course of antibiotics for spinal infections without complications.展开更多
Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospit...Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospitalized in educational-therapeutic hospitals and were identified using standard microbiological tests.Then,the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method.The bacterial DNAs were extracted by the alkaline lysis method.Finally,the presence of exoU and exoY genes was evaluated by the PCR test.Results:In this study,47%,72%,29%,39%,40%,and 44%of the isolates were non-susceptible to piperacillin,aztreonam,ceftazidime,imipenem,tobramycin,and ciprofloxacin,respectively.In addition,95%and 93%of the clinical isolates carried the exoU and exoY genes.Blood and fecal isolates had both virulence genes,while only one wound isolate had neither genes.Meanwhile,all urinary isolates contained the exoY gene and only one isolate lacked the exoU gene.Also,88 isolates simultaneously had both exoU and exoY genes.Conclusions:High prevalence of exoU and exoY genes in this region indicates a significant role of typeⅢsecretion system in pathogenesis of Pseudomonas aeruginosa.The typeⅢsecretion system may be a suitable target to reduce the pathogenicity of this bacterium.展开更多
文摘Market garden products can carry several types of microorganisms, and their consumption is the source of many cases of food poisoning. This work aimed to improve food safety in Benin. In characterizing strains of K. pneumoniae and fluorescent Pseudomonas spp. at the biochemical and molecular level, the target was to identify contaminated watering water and garden products sold during Cotonou in both the dry and rainy seasons. A total of 164 samples of market garden products and 22 samples of watering water were investigated. The results showed that 5.91% of market garden products and watering water were contaminated by K. pneumoniae and 20.43% by fluorescent Pseudomonas spp. During the dry season, cabbage was most contaminated by fluorescent Pseudomonas spp. (50%). Pool water was more contaminated with K. pneumoniae (17%). All isolated strains were resistant to both amoxicillin and penicillin. All strains of K. pneumoniae and fluorescent Pseudomonas spp. were not resistant to imipenem, and 22% of them produced penicillinase. Among the 49 strains producing penicillinase isolated, 64.29% and 21.43% carried bla<sub>TEM</sub> and bla<sub>SHV</sub> respectively while 14.28% carried bla<sub>CTX-M</sub> genes. In light of the previously-developed results and considering the importance of horticultural products in Beninese food habits, we must improve national awareness of the risk for foodborne illness.
文摘A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast AIgeria).Three major bacterial groups were cultured (total aerobic, enterobacteria, and staphylococci) from 14 specimens of cockroaches, and antibiotic susceptibility was tested for both Staphylococcus and Pseudomonas isolates. Culturing showed that the total bacterial load of cockroaches from different households were comparable (P〈0.001) and enterobacteria were the predominant colonizers of the insect surface, with a bacterial load of (2.1×10^5 CFU/insect), whereas the staphylococci group was the minority. Twenty-eight bacterial species were isolated, and susceptibility patterns showed that most of the staphylococci isolates were highly susceptible to chloramphenicol, gentamycin, pristinamycin, ofloxacin, clindamycin, and vancomycin; however, Pseudomonas strains exhibited resistance to amoxicillin/clavulanic acid, imipenem, and the second-generation antibiotic cephalosporin cefuroxime.
文摘When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave ACC to form a-ketobutyrate and ammonium, thereby lowering levels of ethylene. The aim of this study was to isolate and characterize ACC deaminase-producing bacteria from the rhizosphere of salt-stressed canola (Brassica napus L.). Out of 105 random bacterial isolates, 15 were able to utilize ACC as the sole source of nitrogen. These 15 isolates were also positive for indole acetic acid (IAA) production. Phylogenetic analysis based on partial 16S rDNA sequences showed that all isolates belonged to fluorescent Pseudomonas spp. In the canola rhizosphere investigated in this study, Pseudomonas fluorescens was the dominant ACC deaminase-producing species. Cluster analysis based on BOX-AIR-based repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) patterns suggested a high degree of genetic variability in ACC deaminase-producing P. fluorescens strains. The presence of indigenous ACC-degrading bacteria in the rhizosphere of canola grown in saline soils indicates that these bacteria may contribute to salinity tolerance.
文摘Plant growth promontory Pseudomonas strains were isolated from root nodules of five plant species, viz., Trifolium pretense, Cicer arietinum, Amaranthus polygamus, Vigna mungo, and Trigonella foenum;that plants were denizen of Shekhawati region of Rajasthan. A total of 8 bacterial isolates were evaluated for growth promotion using PGP properties. Partial 16S rDNA sequencing data showed that these 8 bacterial isolates belonged to genus Pseudomonas. MEGA 4.0.2, software was used to construct a neighbor joining tree by employing boot strap method. Result exhibited significant diversity among recovered Pseudomonas strains.
文摘Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.
文摘Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.
基金supported by the National Key Research and Development Program of China(2018YFA0902100)the National Natural Science Foundation of China(22178262)the Tianjin Key Research and Development Program(23YFZCSN00110).
文摘The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,wherein the metabolic activities of microorganisms can transform toxic pesticides into compounds with lower or no toxicity.In this study,we obtained eight pesticide-degrading strains from pesticide-contaminated sites through continuous enrichment and screening.Four highly efficient pesticide-degrading strains(degradation ratios exceeding 80%)were identified.Among them,Pseudomonas sp.BL5 exhibited the strongest growth(exceeding 10^(9) CFU·ml^(-1))and outstanding degradation of benzene derivatives and chlorinated hydrocarbons at both laboratory and pilot scales,with degradation ratios exceeding 98%and 99.6%,respectively.This research provides new tools and insights for the bioremediation of pesticide-related pollutants.
文摘Urinary tract infections (UTIs) caused by uropathogens are a significant public health problem, and their treatment primarily relies on antibiotic therapy. However, the increasing global development of antibiotic resistance necessitates updating diagnostic techniques to ensure higher sensitivity and specificity, especially with advancements in science and medicine. This study aimed to evaluate the prevalence of UTIs and antibiotic resistance profiles through urine culture, as well as to identify Klebsiella pneumoniae, Klebsiella oxytoca, and Acinetobacter spp. in urine samples using a molecular approach with multiplex real-time PCR. From May 3 to July 25, 2023, at the Pietro Annigoni Biomolecular Research Center (CERBA) and Saint Camille Hospital of Ouagadougou (HOSCO), 209 urine samples collected from patients with suspected UTIs were analyzed using both urine culture and multiplex real-time PCR. Among the 209 patients, 52.15% were male and 47.85% female, with an average age of 46.87 ± 21.33 years. Urine cultures revealed an overall UTI prevalence of 23.44%, with a prevalence of 8.13% in men versus 15.31% in women (P = 0.023). The bacterial prevalence rates were as follows: Escherichia coli (12.92%), Klebsiella spp. (7.18%), Enterobacter cloacae (1.44%), Staphylococcus aureus (0.96%), and other bacteria. Klebsiella spp. demonstrated 100% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, while Escherichia coli showed 96.2% and 65.4% resistance to Amoxicillin and Amoxicillin/Clavulanic Acid, respectively. PCR analysis of the target bacteria revealed mono-infection prevalence rates of Klebsiella pneumoniae (10.39%), Klebsiella oxytoca (7.79%), and Acinetobacter spp. (7.79%), along with a co-infection prevalence rate of Klebsiella pneumoniae/Acinetobacter spp. (1.30%). This study demonstrated that PCR, with its high sensitivity and specificity, could effectively distinguish Klebsiella pneumoniae from Klebsiella oxytoca and detect Acinetobacter spp. in less than 24 hours—something urine culture alone could not achieve. The relative ease of automating urine PCR testing, combined with its diagnostic accuracy and rapid turnaround time, makes it a valuable addition to modern medical practice for the laboratory diagnosis of UTIs.
基金The National Natural Science Foundation of China under contract No.42130403the Fundamental Research Funds for the Central Universities under contract No.202362003the National Key Research&Development Program of China under contract No.2017YFC1404300。
文摘Understan ding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments.Karenia spp.blooms in the East China Sea show a significant correlation with nutrient regimes.However,the impact of key components of nutrients,especially dissolved organic nitrogen(DON),on the blooms of Karenia spp.is not clear.Quantitative research is still lacking.In this study,the cruise observations,field mesocosm-flask culture experiments,and a multinitrogen-tri-phytoplankton-detritus model(NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp.in the East China Sea.It has a synchronism rhythm of diatom-P.donghaienseKarenia spp.-diatom loop in the field culture experiment,which is consistent with the results of the cruise observation.The results showed that the processes of terrigenous DON(TeDON) and dissolved inorganic nitrogen(DIN:NO_(3)^(-)-N,NH_(4)^(+)-N) absorption promoted P.donghaiense to become the dominant algae in the community;whereas the processes of DON from P.donghaiense absorption promoted Karenia spp.to become the dominant algae in ambient DIN exhaustion.In addition,the three-dimensional fluorescence components of humus C,tyrosine and fulvic acid can indicate the processes of growth and extinction of P.donghaiense and Karenia spp.,respectively.This study infers that P.donghaiense and Karenia spp.regime shift mechanism associated with the nutrient regime in coastal waters,which provides a scientific basis for the environmental management of coastal eco system health.
基金supported by the China Postdoctoral Science Foundation(No.2022M720401)the Postdoctoral Research Foundation of Shunde Innovation School,University of Science and Technology Beijing(No.2022BH007)the National Natural Science Foundation of China(No.52301074).
文摘To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics,corrosion behavior(morphology observation and electrochemical properties),and antimicrobial performance of Fe_(x)Cu_((1−x))CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa.The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties.Results revealed that all Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs exhibited an FCC(face centered cubic)phase,with significant grain refinement observed in Fe_(0.75)Cu_(0.25)CoNiCrMn HEA.Electrochemical tests indicated that Fe_(0.75)Cu_(0.25)CoNiCrMn HEA demonstrated lower corrosion current density(i_(corr))and pitting potential(E_(pit))compared to other Fe_(x)Cu_((1−x))CoNiCrMn HEAs in P.aeruginosa-inoculated medium,exhibiting superior resistance to MIC.Anti-microbial tests showed that after 14 d of immersion,Fe_(0.75)Cu_(0.25)CoNiCrMn achieved an antibacterial rate of 89.5%,effectively inhibiting the adhesion and biofilm formation of P.aeruginosa,thereby achieving resistance to MIC.
文摘Strawberry (Fragaria spp.) is one of the most important fruits classified as exotic fruits imported into Cameroon. To have an inventory of its cultivation in Cameroon, a survey study was carried out among eight farms of Fragaria spp. from January 2021 to February 2022. The plant was introduced in Cameroon in 2018. There are 13 varieties of Fragaria spp. currently cultivated. Among these 13 varieties, eleven are hybrids of Fragaria x ananassa (“Amiga”, “Amine”, “Camarosa”, “Chandler”, “Charlotte”, “Elsanta”, “Gariguette”, “Madame Moutot”, “Ostara”, “Ruby gem” and “San Andreas”), and two of the hybrids of Fragaria vesca (“Maestro” and “Mara des bois”). The cropping system, irrigation system, and type of fertilizers applied differ from one strawberry farm to another. Biofertilizers (such as mycorrhizal), inorganic and organic fertilizers are actually used to improve production. The potential annual production of strawberries from January 2021 to February 2022, estimated based on the survey data, was 21.216 tons for all growers. Among these eight production farms, the Lolodorf BIO Farm presents 6000 kg (six tons) of strawberries and 100,000 stolons (seedlings) produced, from seven varieties of Fragaria spp. cultivated, with 6 varieties which are hybrids variety Fragaria x ananassa (“Amiga”, “Amine”, “Chandler”, “Gariguette”, “Madame Moutot”, and “Ruby gem”), and one which is a hybrid of Fragaria vesca (“Mara des bois”). Certain diseases were also observed and recorded depending on the growing areas.
基金supported by grants from HEIP(Higher Education Improvement Project)Project and Royal University of Agriculture.
文摘The study was conducted to identify Aeromonas spp.and Vibrio spp.from fresh Pangasius fish(n=153)in Cambodia and test their antimicrobial susceptibility to antibiotics.The samples were collected from different wet markets of Phnom Penh city and Kampong Thom,and Siem Reap provinces.The bacteria were isolated by using selective medium and their AMR(Antimicrobial Resistance)profile was tested by API 20E technique,respectively.Susceptibility profile was determined for seven antibiotics commonly used.The Vibrio spp.(34.64%,n=53)was found to be higher than Aeromonas spp.(24.83%,n=38).Four Vibrio and four Aeromonas species were identified where V.parahaemolyticus(57%,n=30)was the highest,followed by V.cholerae(38%,n=20),V.fluvialis(3.8%,n=2)and V.aglinolyticus(1.9%,n=1),whereas A.hydrophila(47%,n=18)was the highest,followed by A.hydrophila/caviae(45%,n=17),A.sobria(5%,n=2),A.caviae(2.6%,n=1).All the species presented high multi-resistance to the tested antibiotics.The antibiotic susceptibility profile to ampicillin(74%-100%),ciprofloxacin(7%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(7%-100%),erythromycin(10%-100%)and colistin sulphate(33%-100%)was revealed resistance level in Aeromonas spp.whereas few species of Vibrio spp.resistant to ampicillin(43%-100%),ciprofloxacin(14%-100%),sulfamethoxazole/trimethoprim(14%-100%),florfenicol(14%-100%),oxytetracycline(20%-100%),erythromycin(29%-100%),colistin sulphate(33%-100%)were also identified.The results revealed these Aeromonas spp.and Vibrio spp.are potentially reservoirs of antibiotic resistance genes.MDR(Multidrug Resistance)was widespread among the samples isolated.That is a high-risk source of contamination since those pathogens and antimicrobials are often used.Our findings highlight that the aquatic environment and fresh Pangasius fish act as reservoirs of AMR Aeromonas spp.and Vibrio spp.which underline the need for a judicious use of antimicrobials and timely surveillance of AMR in aquaculture.Overall,the findings of our study indicated the presence of A.hydrophila,A.hydrophila/caviae,A.caviae,A.sobria,V.parahaemolyticus,V.cholerae,V.alginolyticus and V.fluvialis and high MDR.This result will allow us to identify the potential risk over circulating isolates in animal health and public health and the spread through the food chain offering supports for appropriate sanitary actions.
文摘BACKGROUND Neuropathic pain(NP)is the primary symptom of various neurological condi-tions.Patients with NP often experience mood disorders,particularly depression and anxiety,that can severely affect their normal lives.Microglial cells are as-sociated with NP.Excessive inflammatory responses,especially the secretion of large amounts of pro-inflammatory cytokines,ultimately lead to neuroinflam-mation.Microglial pyroptosis is a newly discovered form of inflammatory cell death associated with immune responses and inflammation-related diseases of the central nervous system.METHODS Two models,an in vitro lipopolysaccharide(LPS)-stimulated microglial cell model and a selective nerve injury model using BTX-A and SPP1 knockdown treatments,were used.Key proteins in the pyroptosis signaling pathway,NLRP3-GSDMD,were assessed using western blotting,real-time quantitative polymerase chain reaction,and immunofluorescence.Inflammatory factors[interleukin(IL)-6,IL-1β,and tumor necrosis factor(TNF)-α]were assessed using enzyme-linked immuno-sorbent assay.We also evaluated microglial cell proliferation and apoptosis.Furthermore,we measured pain sensation by assessing the delayed hind paw withdrawal latency using thermal stimulation.RESULTS The expression levels of ACS and GSDMD-N and the mRNA expression of TNF-α,IL-6,and IL-1βwere enhanced in LPS-treated microglia.Furthermore,SPP1 expression was also induced in LPS-treated microglia.Notably,BTX-A inhibited SPP1 mRNA and protein expression in the LPS-treated microglia.Additionally,depletion of SPP1 or BTX-A inhibited cell viability and induced apoptosis in LPS-treated microglia,whereas co-treatment with BTX-A enhanced the effect of SPP1 short hairpin(sh)RNA in LPS-treated microglia.Finally,SPP1 depletion or BTX-A treatment reduced the levels of GSDMD-N,NLPRP3,and ASC and suppressed the production of inflammatory factors.CONCLUSION Notably,BTX-A therapy and SPP1 shRNA enhance microglial proliferation and apoptosis and inhibit microglial death.It improves pain perception and inhibits microglial activation in rats with selective nerve pain.
文摘BACKGROUND The clinical incidence of spinal infection is gradually increasing,and its onset is insidious,easily leading to missed diagnosis and misdiagnosis,which may lead to serious complications such as nervous system dysfunction,spinal instability and/or deformity,and cause a huge burden on society and families.Early identification of the causative agent and precision medicine will greatly reduce the suffering of patients.At present,the main pathogenic bacteria that cause spinal infection are Staphylococcus aureus,Streptococcus,Pneumococcus,Escherichia coli,and Klebsiella.There are no reports of spinal infection caused by Pseudomonas fluorescens.CASE SUMMARY We report a 32-year-old female patient with spinal infection.She presented with flank pain,initially thought to be bone metastases or bone tuberculosis,and had a family background of tumors.Her clinical features and changes in imaging and laboratory tests led to the suspicion of thoracic spine infection.Histopathology of the lesion showed inflammation,tissue culture of the lesion was negative several times,and the possible pathogen-Pseudomonas fluorescens was found after gene sequencing of the lesion.The patient recovered completely after a full course of antibiotic treatment.CONCLUSION This report increases the range of pathogens involved in spinal infections,highlights the unique advantages of gene sequencing technology in difficult-todiagnose diseases,and validates conservative treatment with a full course of antibiotics for spinal infections without complications.
文摘Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospitalized in educational-therapeutic hospitals and were identified using standard microbiological tests.Then,the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method.The bacterial DNAs were extracted by the alkaline lysis method.Finally,the presence of exoU and exoY genes was evaluated by the PCR test.Results:In this study,47%,72%,29%,39%,40%,and 44%of the isolates were non-susceptible to piperacillin,aztreonam,ceftazidime,imipenem,tobramycin,and ciprofloxacin,respectively.In addition,95%and 93%of the clinical isolates carried the exoU and exoY genes.Blood and fecal isolates had both virulence genes,while only one wound isolate had neither genes.Meanwhile,all urinary isolates contained the exoY gene and only one isolate lacked the exoU gene.Also,88 isolates simultaneously had both exoU and exoY genes.Conclusions:High prevalence of exoU and exoY genes in this region indicates a significant role of typeⅢsecretion system in pathogenesis of Pseudomonas aeruginosa.The typeⅢsecretion system may be a suitable target to reduce the pathogenicity of this bacterium.