The Al 0.24Ga 0.76As/In 0.22Ga 0.78As single delta-doped PHEMT (SH-PHEMT) and double delta-doped PHEMT (DH-PHEMT) are fabricated and investigated.Based on the employment of double heterojunction,double del...The Al 0.24Ga 0.76As/In 0.22Ga 0.78As single delta-doped PHEMT (SH-PHEMT) and double delta-doped PHEMT (DH-PHEMT) are fabricated and investigated.Based on the employment of double heterojunction,double delta doped design,the DH-PHEMT can enhance the carrier confinement,increase the electron gas density,and improve the electron gas distribution,which is beneficial to the device performance.A high device linearity,high transconductance over a large gate voltage swing,high current drivability are found in DH-PHEMT.These improvements suggest that DH-PHEMT is more suitable for high linearity applications in microwave power device.展开更多
The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are r...The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed.展开更多
The damage effect characteristics of GaAs pseudomorphic high electron mobility transistor(pHEMT)under the irradiation of C band high-power microwave(HPM)is investigated in this paper.Based on the theoretical analysis,...The damage effect characteristics of GaAs pseudomorphic high electron mobility transistor(pHEMT)under the irradiation of C band high-power microwave(HPM)is investigated in this paper.Based on the theoretical analysis,the thermoelectric coupling model is established,and the key damage parameters of the device under typical pulse conditions are predicted,including the damage location,damage power,etc.By the injection effect test and device microanatomy analysis through using scanning electron microscope(SEM)and energy dispersive spectrometer(EDS),it is concluded that the gate metal in the first stage of the device is the vulnerable to HPM damage,especially the side below the gate near the source.The damage power in the injection test is about 40 dBm and in good agreement with the simulation result.This work has a certain reference value for microwave damage assessment of pHEMT.展开更多
To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursor. The precursor MgSO4·5Mg(OH)2·2H2O ...To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursor. The precursor MgSO4·5Mg(OH)2·2H2O (152 MOS) single component was prepared by hydrothermal synthesis reaction in MgSO4 solution and NaOH solution. MgO whisker was prepared by heating treatment of the precursor at low heating speed to keep the structure of the precursor not be destroyed. The composition, the morphology and the structure of these whiskers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the MgO whisker was about 0.5-1.2 μm in diameter and 20-80 μm in length, with an aspect ratio no less than 100.展开更多
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed ...The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.展开更多
文章基于赝高电子迁移率晶体管(Pseudomorphic High Electron Mobility Transistor,PHEMT)工艺,设计一款Ka波段单刀四掷反射式开关芯片。为降低芯片插入损耗和提高隔离度,电路选取并联型反射式拓扑结构。同时,为提高工作带宽和减小芯片...文章基于赝高电子迁移率晶体管(Pseudomorphic High Electron Mobility Transistor,PHEMT)工艺,设计一款Ka波段单刀四掷反射式开关芯片。为降低芯片插入损耗和提高隔离度,电路选取并联型反射式拓扑结构。同时,为提高工作带宽和减小芯片面积,采用高低阻抗变换线替代50Ω传输线方式匹配阻抗。芯片采用0 V和-5 V电压控制支路开关的导通或关断。芯片尺寸为1.85 mm×1.55 mm。实测结果表明,在28~42 GHz工作频带范围内,输入输出回波损耗小于-10 dB,插入损耗小于3.2 dB,隔离度大于38 dB,实现了开关芯片低插损、高隔离度的优异性能。展开更多
The monolithic integration of enhancement- and depletion-mode (E/D-mode) InGaP/AIGaAs/InGaAs pseudomorphic high electron mobility transistors (PHEMTs) with a 1.0μm gate length is presented. Epilayers are grown on...The monolithic integration of enhancement- and depletion-mode (E/D-mode) InGaP/AIGaAs/InGaAs pseudomorphic high electron mobility transistors (PHEMTs) with a 1.0μm gate length is presented. Epilayers are grown on SI GaAs substrates using MBE. For this structure, a mobility of 5410cm^2/(V · s) and a sheet density of 1.34 × 10^12 cm^-2 are achieved at room temperature. During the gate fabrication of E/D-mode PHEMTs,a novel twostep technology is applied. The devices with a gate dimension of 1μm × 100μm exhibit good DC and RF performances. Threshold voltages of 0. 2 and -0. 4V,maximum drain current densities of 300 and 340mA/mm,and extrinsic transconductances of 350 and 300mS/mm for E- and D-mode PHEMTs are obtained, respectively. The reverse gatedrain breakdown voltage is -14V for both E- and D-mode. Current-gain cutoff frequencies of 10. 3 and 12.4GHz and power-gain cutoff frequencies of 12.8 and 14.7GHz for E- and D-mode are reported, respectively.展开更多
文摘The Al 0.24Ga 0.76As/In 0.22Ga 0.78As single delta-doped PHEMT (SH-PHEMT) and double delta-doped PHEMT (DH-PHEMT) are fabricated and investigated.Based on the employment of double heterojunction,double delta doped design,the DH-PHEMT can enhance the carrier confinement,increase the electron gas density,and improve the electron gas distribution,which is beneficial to the device performance.A high device linearity,high transconductance over a large gate voltage swing,high current drivability are found in DH-PHEMT.These improvements suggest that DH-PHEMT is more suitable for high linearity applications in microwave power device.
基金the Ministry of Land and Resource of P.R.China the National Natural Science Foundation of China(No.40172062).
文摘The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed.
基金Project supported by the Foundation Enhancement Planthe National Natural Science Foundation of China (Grant No. 61974116)
文摘The damage effect characteristics of GaAs pseudomorphic high electron mobility transistor(pHEMT)under the irradiation of C band high-power microwave(HPM)is investigated in this paper.Based on the theoretical analysis,the thermoelectric coupling model is established,and the key damage parameters of the device under typical pulse conditions are predicted,including the damage location,damage power,etc.By the injection effect test and device microanatomy analysis through using scanning electron microscope(SEM)and energy dispersive spectrometer(EDS),it is concluded that the gate metal in the first stage of the device is the vulnerable to HPM damage,especially the side below the gate near the source.The damage power in the injection test is about 40 dBm and in good agreement with the simulation result.This work has a certain reference value for microwave damage assessment of pHEMT.
文摘To promote the scale-up production and industrial application of magnesium oxide (MgO) whiskers, MgO whiskers were prepared by the calcination method of the precursor. The precursor MgSO4·5Mg(OH)2·2H2O (152 MOS) single component was prepared by hydrothermal synthesis reaction in MgSO4 solution and NaOH solution. MgO whisker was prepared by heating treatment of the precursor at low heating speed to keep the structure of the precursor not be destroyed. The composition, the morphology and the structure of these whiskers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the MgO whisker was about 0.5-1.2 μm in diameter and 20-80 μm in length, with an aspect ratio no less than 100.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41172085 & 41472066)the Scientific Project of China Geological Survey (Grant No. 12120114028401)
文摘The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.
文摘The monolithic integration of enhancement- and depletion-mode (E/D-mode) InGaP/AIGaAs/InGaAs pseudomorphic high electron mobility transistors (PHEMTs) with a 1.0μm gate length is presented. Epilayers are grown on SI GaAs substrates using MBE. For this structure, a mobility of 5410cm^2/(V · s) and a sheet density of 1.34 × 10^12 cm^-2 are achieved at room temperature. During the gate fabrication of E/D-mode PHEMTs,a novel twostep technology is applied. The devices with a gate dimension of 1μm × 100μm exhibit good DC and RF performances. Threshold voltages of 0. 2 and -0. 4V,maximum drain current densities of 300 and 340mA/mm,and extrinsic transconductances of 350 and 300mS/mm for E- and D-mode PHEMTs are obtained, respectively. The reverse gatedrain breakdown voltage is -14V for both E- and D-mode. Current-gain cutoff frequencies of 10. 3 and 12.4GHz and power-gain cutoff frequencies of 12.8 and 14.7GHz for E- and D-mode are reported, respectively.