Two hydrocarbon degrading bacteria NJ276 and NJ341 were screened from 385 Antarctic marine bacteria and their degrading characteristics were studied. Diesel oil as sole carbon source was used in this study. The result...Two hydrocarbon degrading bacteria NJ276 and NJ341 were screened from 385 Antarctic marine bacteria and their degrading characteristics were studied. Diesel oil as sole carbon source was used in this study. The results showed that the oil degradation rates of Antarctic psychrophile bacteria NJ276 and NJ341 were 23.47 % and 32.15 %, respectively, after 20 days culturation at 5 ℃, and the rates were 43.95 % and 62.47 % respectively after 20 days culturation at 15 ℃. The oil degradation abilities were enhanced remarkably with the increasing culture temperature. GC - MSs indicated the residual oil contained C15 - C21 7 alkyls after degradation by NJ276, and C16, C17 and C18 3 alkyls after degradation by NJ341. The 16S rDNA gene sequences homology and phylogenetic analysis of the two Antarctic psychrophile bacteria showed that NJ276 belonged to the described genus Pseudoalteromonas and NJ341 belonged to the genus Colwellia.展开更多
A strain of psychrophilic bacterium, 2-5-10-1, which produces low-temperature lipase, is isolated from the deep sea of Prydz Bay in Southern Ocean. The highest lipase secretion of this strain is observed at 5 degreesC...A strain of psychrophilic bacterium, 2-5-10-1, which produces low-temperature lipase, is isolated from the deep sea of Prydz Bay in Southern Ocean. The highest lipase secretion of this strain is observed at 5 degreesC and this temperature is also for optimal growth. Tween 80 and olive oil enhance secretion of lipase. The optimal temperature and pH for lipase activity are 35 degreesC and 7.5 degreesC respectively. At 0degreesC, the lipase still has 37% relative enzyme activity. The lipase shows high thermolability, more than 50% activity lost after incubation at 60 degreesC for 15 min. EDTA has no effect on lipase activity, indicating the lipase activity is independent of divalent cation. In contrast, the lipase activity is inhibited drastically by Cu2+ and Zn2+.展开更多
Random mutagenesis is commonly used to study gene function. The screening of mutants exhibiting specific pheno- types assists in the identification of phenotype-related genes. In the current study, we isolated Antarct...Random mutagenesis is commonly used to study gene function. The screening of mutants exhibiting specific pheno- types assists in the identification of phenotype-related genes. In the current study, we isolated Antarctic bacteria, and developed a transposon Tn5 mutagenesis system. A total of 26 strains were isolated from seawater and freshwater near Antarctic King Sejong Research Station, King George Island. Six Psychrobacter strains were identified as psychrophilic, with optimal growth tempera- tures of 10~C or 15~C Psychrobacter cryohalolentis PAMC 21807 with a high growth rate at 4~C was selected for transposon mutagenesis. Tri-parental conjugation with a plasmid containing Tn5 produced 13 putative recombinants containing the selectable marker. Genomic Southern hybridization confirmed Tn5 existed as episomes for seven recombinants, and for a single recombinant, Tn5 was integrated into the genome of Psychrobacter cryohalolentis PAMC 21807. The result indicates that the mutagenesis method, although successful, has a relatively low rate. The psychrophilic bacteria isolated in this study may be a useful resource for studying cold adaptation mechanisms, and the mutagenesis method can be applied to genetic analysis.展开更多
Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effec...Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m^2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m^2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.展开更多
基金the Natural Science Foundation of China(No.40876107).
文摘Two hydrocarbon degrading bacteria NJ276 and NJ341 were screened from 385 Antarctic marine bacteria and their degrading characteristics were studied. Diesel oil as sole carbon source was used in this study. The results showed that the oil degradation rates of Antarctic psychrophile bacteria NJ276 and NJ341 were 23.47 % and 32.15 %, respectively, after 20 days culturation at 5 ℃, and the rates were 43.95 % and 62.47 % respectively after 20 days culturation at 15 ℃. The oil degradation abilities were enhanced remarkably with the increasing culture temperature. GC - MSs indicated the residual oil contained C15 - C21 7 alkyls after degradation by NJ276, and C16, C17 and C18 3 alkyls after degradation by NJ341. The 16S rDNA gene sequences homology and phylogenetic analysis of the two Antarctic psychrophile bacteria showed that NJ276 belonged to the described genus Pseudoalteromonas and NJ341 belonged to the genus Colwellia.
文摘A strain of psychrophilic bacterium, 2-5-10-1, which produces low-temperature lipase, is isolated from the deep sea of Prydz Bay in Southern Ocean. The highest lipase secretion of this strain is observed at 5 degreesC and this temperature is also for optimal growth. Tween 80 and olive oil enhance secretion of lipase. The optimal temperature and pH for lipase activity are 35 degreesC and 7.5 degreesC respectively. At 0degreesC, the lipase still has 37% relative enzyme activity. The lipase shows high thermolability, more than 50% activity lost after incubation at 60 degreesC for 15 min. EDTA has no effect on lipase activity, indicating the lipase activity is independent of divalent cation. In contrast, the lipase activity is inhibited drastically by Cu2+ and Zn2+.
基金supported by the Korea Polar Research Institute(Grant nos.PE08050 and PE13240)
文摘Random mutagenesis is commonly used to study gene function. The screening of mutants exhibiting specific pheno- types assists in the identification of phenotype-related genes. In the current study, we isolated Antarctic bacteria, and developed a transposon Tn5 mutagenesis system. A total of 26 strains were isolated from seawater and freshwater near Antarctic King Sejong Research Station, King George Island. Six Psychrobacter strains were identified as psychrophilic, with optimal growth tempera- tures of 10~C or 15~C Psychrobacter cryohalolentis PAMC 21807 with a high growth rate at 4~C was selected for transposon mutagenesis. Tri-parental conjugation with a plasmid containing Tn5 produced 13 putative recombinants containing the selectable marker. Genomic Southern hybridization confirmed Tn5 existed as episomes for seven recombinants, and for a single recombinant, Tn5 was integrated into the genome of Psychrobacter cryohalolentis PAMC 21807. The result indicates that the mutagenesis method, although successful, has a relatively low rate. The psychrophilic bacteria isolated in this study may be a useful resource for studying cold adaptation mechanisms, and the mutagenesis method can be applied to genetic analysis.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.51225802)the National Natural Science Foundation of China(No.51578534)+1 种基金the“Hundred Talents Program”of the Chinese Academy of SciencesProject 135 of the Chinese Academy of Sciences(No.YSW2013B06)
文摘Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m^2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m^2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.