期刊文献+
共找到1,002篇文章
< 1 2 51 >
每页显示 20 50 100
Boosting the water gas shift reaction on Pt/CeO_(2)-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying 被引量:3
1
作者 Kun Yuan Xiao-Chen Sun +4 位作者 Hai-Jing Yin Liang Zhou Hai-Chao Liu Chun-Hua Yan Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期241-249,共9页
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ... The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation. 展开更多
关键词 pt/CeO_(2)catalysts Water–gas shift reaction Support doping Bimetallic alloying
下载PDF
Silica-modified Pt/TiO_(2) catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation
2
作者 Zhengjian Hou Yuanyuan Zhu +6 位作者 Hua Chi Li Zhao Huijie Wei Yanyan Xi Lishuang Ma Xiang Feng Xufeng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期189-198,共10页
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob... Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed. 展开更多
关键词 pt catalyst Silica modification HYDROGENATION CINNAMALDEHYDE Strong metal-support interaction
下载PDF
New technique of comprehensive utilization of spent Al_2O_3-based catalyst 被引量:3
3
作者 冯其明 陈云 +3 位作者 邵延海 张国范 欧乐明 卢毅屏 《Journal of Central South University of Technology》 EI 2006年第2期151-155,共5页
A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roas... A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min. 展开更多
关键词 spent Al2O3-based catalyst vanadium molybdenum comprehensive utilization roasting with sodium leaching rate
下载PDF
Oligomerization and Polymerization of Ethylene Initiated by a Novel Ni(Ⅱ)-Based Acetyliminopyridine Complexes as Single-Site Catalysts 被引量:1
4
作者 Baojun Zhang Yanji Wang +5 位作者 Gang Wang Jun Cao Shukun Sun Lihua Xing Yongcheng Sun Yunguang Han 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期64-69,共6页
Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethyl... Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors. 展开更多
关键词 OLIGOMERIZATION POLYMERIZATION ETHYLENE Ni(II)-based catalyst α -olefin
下载PDF
Influences of Platinum Precursors and Solution Acidities on REO-Based Catalysts Performances
5
作者 张爱敏 宁平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期39-41,共3页
Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as P... Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity. 展开更多
关键词 pt precursors (Ce-Zr-La-Pr)O mixed oxide three-way catalyst catalyst performances solution acidity rare earths
下载PDF
Rational design of MoS_(2)-based catalysts toward lignin hydrodeoxygenation:Interplay of structure,catalysis,and stability
6
作者 Xinyong Diao Na Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期601-631,I0015,共32页
The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to ... The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation. 展开更多
关键词 Lignin hydrodeoxygenation MoS_(2)-based catalysts Structure-activity relationship Modification strategies Deactivation mechanism
下载PDF
PtSnNa/SUZ-4:An efficient catalyst for propane dehydrogenation 被引量:9
7
作者 周华兰 龚静静 +4 位作者 许波连 邓生财 丁元华 俞磊 范以宁 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期529-536,共8页
The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech... The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation. 展开更多
关键词 SUZ-4 zeolite ptSnNa catalyst Propane dehydrogenation catalyst stability pt distribution
下载PDF
Propene and CO oxidation on Pt/Ce-Zr-SO_4^(2-) diesel oxidation catalysts:Effect of sulfate on activity and stability 被引量:9
8
作者 顾蕾 陈晓 +3 位作者 周瑛 朱秋莲 黄海凤 卢晗锋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期607-616,共10页
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv... Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance. 展开更多
关键词 Diesel oxidation catalyst pt/Ce-Zr-SO_4^(2-) catalyst Sulfur resistance Catalytic oxidation
下载PDF
Preparation of high active Pt/C cathode electrocatalyst for direct methanol fuel cell by citrate-stabilized method 被引量:3
9
作者 蒋庆来 彭忠东 +3 位作者 谢晓峰 杜柯 胡国荣 刘业翔 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期127-132,共6页
Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The... Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2. 展开更多
关键词 direct methanol fuel cell catalyst pt/C CITRATE reductant carbon support
下载PDF
Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4 Catalyst 被引量:1
10
作者 张勇 陈春 +5 位作者 龚万兵 宋杰瑶 苏燕平 张海民 汪国忠 赵惠军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期467-473,I0002,共8页
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti... A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field. 展开更多
关键词 Activated charcoal supported pt/Fe3O4 catalysts Redox method Transfer hydrogenation Cinnamaldehyde Cinnamyl alcohol
下载PDF
石墨烯负载Pt催化剂的制备及对甲酸的电催化氧化 被引量:1
11
作者 陈体伟 田甜 +2 位作者 薛茗月 李玉郷 孟成 《许昌学院学报》 CAS 2024年第2期54-57,共4页
采用恒电位电化学还原技术制得石墨烯电极,然后采用循环伏安方法在石墨烯基体上电沉积一层Pt纳米微粒.采用电化学测试技术研究Pt/石墨烯电极材料的电子传递性能及对甲酸电催化氧化性能.相对于商用Pt电极材料,Pt纳米微粒/石墨烯电极材料... 采用恒电位电化学还原技术制得石墨烯电极,然后采用循环伏安方法在石墨烯基体上电沉积一层Pt纳米微粒.采用电化学测试技术研究Pt/石墨烯电极材料的电子传递性能及对甲酸电催化氧化性能.相对于商用Pt电极材料,Pt纳米微粒/石墨烯电极材料对甲酸表现出优异的电催化氧化活性,氧化峰电流显著提高.该种石墨烯负载Pt催化剂有望用作直接甲酸燃料电池的优良电极材料. 展开更多
关键词 石墨烯 直接甲酸燃料电池 铂催化剂 循环伏安法 电催化氧化
下载PDF
用于常温氢氧复合的新型Pt/疏水改性陶瓷催化剂
12
作者 贾青青 胡石林 刘亚明 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第9期1943-1949,共7页
常温氢氧复合反应由于安全性高且能耗低,在核工业除氚、消氢等领域有重要应用,其得以实现的关键为制得性能优异的疏水催化剂。为获得稳定性优且兼具高催化活性的疏水催化剂,本研究制备了新型Pt/疏水改性陶瓷催化剂。陶瓷载体通过构筑CeO... 常温氢氧复合反应由于安全性高且能耗低,在核工业除氚、消氢等领域有重要应用,其得以实现的关键为制得性能优异的疏水催化剂。为获得稳定性优且兼具高催化活性的疏水催化剂,本研究制备了新型Pt/疏水改性陶瓷催化剂。陶瓷载体通过构筑CeO2表面粗糙结构,结合涂覆低表面能十三氟辛基三甲氧基硅烷(PFOTMS)进行疏水改性,而后经浸渍-气相还原制得疏水催化剂。结果表明,与常规仅涂覆低表面能材料对陶瓷载体进行疏水改性相比,新型疏水结构的构筑不仅可使疏水催化剂获得更优的疏水性,还可进一步提升催化剂的催化活性及稳定性。制得的新型Pt/疏水改性陶瓷催化剂在480 min反应时长内,氢氧复合效率可维持在99.5%。 展开更多
关键词 除氚 消氢 常温氢氧复合反应 疏水改性陶瓷载体 pt/疏水陶瓷催化剂
下载PDF
Pt-Pd-Ni体系相图与热力学研究进展
13
作者 胡洁琼 张巧 +3 位作者 方继恒 谢明 王宝玲 聂陟枫 《贵金属》 CAS 北大核心 2024年第S01期7-13,共7页
铂基催化剂具有活性高、选择性好、电化学稳定性佳等优点,在工业催化和燃料电池领域具有非常重要的地位。然而,由于成本较高、可用性较低限制了其实际发展。因此,有必要优化铂基催化剂的利用率,设计低成本和高稳定性的铂基催化剂。本研... 铂基催化剂具有活性高、选择性好、电化学稳定性佳等优点,在工业催化和燃料电池领域具有非常重要的地位。然而,由于成本较高、可用性较低限制了其实际发展。因此,有必要优化铂基催化剂的利用率,设计低成本和高稳定性的铂基催化剂。本研究首先介绍了在燃料电池催化剂领域具有应用前景的Pt-Pd-Ni系合金电催化剂的发展和研究现状,然后详细介绍了Pt-Pd-Ni体系的三个二元系相图与热力学评估数据和研究进展,并对Pt-Pd-Ni三元系的一些实验研究进展和今后的研究工作提出展望,对不同相结构对催化性能的影响进行了分析和讨论。通过Pt-Pd-Ni系相图和相结构等的研究将为燃料电池用新型贵金属合金催化材料的设计及工业应用奠定理论和实验基础。 展开更多
关键词 燃料电池催化剂 pt-Pd-Ni体系 合金相图 热力学 有序-无序转变
下载PDF
Enhanced CO oxidation over potassium-promoted Pt/Al_2O_3 catalysts:Kinetic and infrared spectroscopic study 被引量:1
14
作者 刘欢欢 贾爱平 +2 位作者 王瑜 罗孟飞 鲁继青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1976-1986,共11页
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co... A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species. 展开更多
关键词 CO oxidation Potassium Kinetics pt/Al2O3 catalyst Promoting effect
下载PDF
Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO_2 catalysts 被引量:6
15
作者 Xiaodong Chen Xiong Su +5 位作者 Binglian Liang Xiaoli Yang Xinyi Ren Hongmin Duan Yanqiang Huang Tao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1051-1057,共7页
Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the... Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved. 展开更多
关键词 RWGS reaction pt/CeO2 catalyst Formate intermediate MECHANISM
下载PDF
Physicochemical and isomerization property of Pt/SAPO-11 catalysts promoted by rare earths 被引量:5
16
作者 刘维桥 尚通明 +2 位作者 周全发 任杰 孙予罕 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期937-942,共6页
Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffracti... Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys... 展开更多
关键词 pt/SAPO-11 catalyst N-HEptANE HYDROISOMERIZATION rare earths
下载PDF
Pt/WO_3/C nanocomposite with parallel WO_3 nanorods as cathode catalyst for proton exchange membrane fuel cells 被引量:5
17
作者 Meiling Dou Ming Hou +4 位作者 Zhilin Li Feng Wang Dong Liang Zhigang Shao Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期39-44,共6页
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an en... Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction (ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst. 展开更多
关键词 tungsten oxides pt nanoparticles catalyst proton exchange membrane fuel cells
下载PDF
Preparation of Pt/C Catalyst with a New and Simple Organic Sol Method 被引量:4
18
作者 YaWenTANG GangLI +2 位作者 ChangPengLIU WeiX1NG TianHongLU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第7期875-878,共4页
It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C cataly... It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated. 展开更多
关键词 pt colloid pt/C catalyst particle size.
下载PDF
Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property 被引量:17
19
作者 Xiao Xia Wang Joshua Sokolowski +1 位作者 Hui Liu Gang Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期739-755,共17页
Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, ... Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA). 展开更多
关键词 Proton exchange membrane fuel cell Oxygen reduction reaction Low pt catalyst Catalytic activity Stability
下载PDF
Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition 被引量:8
20
作者 Jie Gan Jiankang Zhang +5 位作者 Baiyan Zhang Wenyao Chen Dongfang Niu Yong Qin Xuezhi Duan Xinggui Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期59-66,I0003,共9页
Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-suppo... Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-supported Pt nanoparticles(Pt/CNT)are prepared by both atomic layer deposition(ALD)and impregnation methods.The performances of the catalysts toward the ORR in acidic media are comparatively studied to probe the effects of the sizes of the Pt nanoparticles together with their distributions,electronic properties,and local environments.The ALD-Pt/CNT catalysts show much higher ORR activity and selectivity than the impregnation-Pt/CNT catalysts.This outstanding ORR performance is ascribed to the well-controlled Pt particle sizes and distributions,desirable Pt^04f binding energy,and the Cl-free Pt surfaces based on the electrocatalytic measurements,catalyst characterizations,and model calculations.The insights reported here could guide the rational design and fine-tuning of carbon-supported Pt catalysts for the ORR. 展开更多
关键词 OXYGEN reduction pt/CNT catalyst ATOMIC LAYER DEPOSITION Active SITES
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部