Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech...The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The...Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.展开更多
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti...A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.展开更多
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co...A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.展开更多
Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the...Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffracti...Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys...展开更多
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an en...Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction (ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.展开更多
It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C cataly...It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.展开更多
Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, ...Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA).展开更多
Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-suppo...Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-supported Pt nanoparticles(Pt/CNT)are prepared by both atomic layer deposition(ALD)and impregnation methods.The performances of the catalysts toward the ORR in acidic media are comparatively studied to probe the effects of the sizes of the Pt nanoparticles together with their distributions,electronic properties,and local environments.The ALD-Pt/CNT catalysts show much higher ORR activity and selectivity than the impregnation-Pt/CNT catalysts.This outstanding ORR performance is ascribed to the well-controlled Pt particle sizes and distributions,desirable Pt^04f binding energy,and the Cl-free Pt surfaces based on the electrocatalytic measurements,catalyst characterizations,and model calculations.The insights reported here could guide the rational design and fine-tuning of carbon-supported Pt catalysts for the ORR.展开更多
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regenerat...Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.展开更多
Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that th...Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.展开更多
Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance ...Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed.展开更多
0.5%Pt-K/γ-Al2O3 catalysts for the synthesis of o-phenylphenol(OPP) from o-cyclohexenyl-cyclohexanone (dimer) dehydrogenation were prepared by means of a two subsequent impregnation method. The effects of catalys...0.5%Pt-K/γ-Al2O3 catalysts for the synthesis of o-phenylphenol(OPP) from o-cyclohexenyl-cyclohexanone (dimer) dehydrogenation were prepared by means of a two subsequent impregnation method. The effects of catalyst preparation parameters, such as K promoters, calcination, and reduction conditions, were investigated. The results showed that the addition of K2SO4 to Pt/γ-Al2O3 catalyst notably promoted the selectivity of OPP, and its optimum content was found to be 6% in mass fraction. The higher activity was obtained when Pt/γ-Al2O3 catalyst was calcined in nitrogen atmosphere at 400--500 ℃ and then reduced at the same temperature for 3 h in hydrogen atmosphere. The conversion of the dimer and the selectivity of OPP were always above 99% and 90%, respectively, over 0.5%Pt-6% K2SO4/γ-Al2O3 catalyst during the pilot scale test of 8000 h.展开更多
In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) st...In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR.展开更多
Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnatio...Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.展开更多
Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic proce...Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic processes.However,the stability of single atoms under oxygen-poor conditions,and the mechanism of hydrogen activation on SACs remain elusive.Here,through a combination of theoretical calculation and experiments,the stabilization of metal single atoms on tungsten oxide and its catalytic properties in H2 activation are investigated.Our calculation results indicate that the oxygen defects on the WO3(001)surface play a vital role in the stabilization of single metal atoms through electron transfer from the oxygen vacancies to the metal atoms.In comparison with Pd and Au,Pt single atoms possess greatly enhanced stability on the WOx(001)surface and carry negative charge,facilitating the dissociation of H-2 to metal-H species(Hδ-)via homolytic cleavage of H2 similar to that occurring in metal ensembles.More importantly,the facile diffusion of Pt-H to the WOx support results in the formation of Bronsted acid sites(Hδ+),imparting bifunctionality to Pt1/WOx.The dynamic formation of Br?nsted acid sites in hydrogen atmosphere proved to be the key to chemoselective hydrogenolysis of glycerol into 1,3-propanediol,which was experimentally demonstrated on the Pt1/WOx catalyst.展开更多
Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that...Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.展开更多
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(1301080C)NNSFC(21202141,21173182)+1 种基金Key Science&Technology Specific Projects of Yangzhou(YZ20122029)the Innovation Foundation of Yangzhou University(2015CXJ009)~~
文摘The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
基金Project(50573041)supported by the National Natural Science Foundation of China
文摘Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.
基金This work is supported by the National Natural Science Foundation of China (No.51372248, No.51432009 and No.51502297), Instrument Developing Project of the Chinese Academy of Sciences (No.yz201421), the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China.
文摘A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.
基金financially supported by the National Natural Science Foundation of China(21173195)~~
文摘A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
基金National Natural Science Foundation of China (nos.21476226 and 21506204)National Key Projects for Fundamental Research and Development of China (2016YFB0600902)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020400)the Youth Innovation Promotion Association CAS for financial support
文摘Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
基金supported by the Foundation of Jiangsu Key Laboratory of Precious Metals Chemistry (SYGK0710)Natural Scientific Foundation of Jiangsu Teachers University of Technology (KYY06029)
文摘Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys...
基金financially supported by the National Natural Science Fundation of China(No.51125007)the National Basic Research Program(No.2012CB215500)
文摘Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction (ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.
文摘It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.
文摘Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA).
基金financially supported by the Natural Science Foundation of China(21922803 and 21776077)the Shanghai Natural Science Foundation(17ZR1407300 and 17ZR1407500)+3 种基金the Program for the Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Shanghai Rising-Star Program(17QA1401200)the State Key Laboratory of Organic-Inorganic Composites(oic-201801007)the Open Project of State Key Laboratory of Chemical Engineering(SKLChe-15C03)。
文摘Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-supported Pt nanoparticles(Pt/CNT)are prepared by both atomic layer deposition(ALD)and impregnation methods.The performances of the catalysts toward the ORR in acidic media are comparatively studied to probe the effects of the sizes of the Pt nanoparticles together with their distributions,electronic properties,and local environments.The ALD-Pt/CNT catalysts show much higher ORR activity and selectivity than the impregnation-Pt/CNT catalysts.This outstanding ORR performance is ascribed to the well-controlled Pt particle sizes and distributions,desirable Pt^04f binding energy,and the Cl-free Pt surfaces based on the electrocatalytic measurements,catalyst characterizations,and model calculations.The insights reported here could guide the rational design and fine-tuning of carbon-supported Pt catalysts for the ORR.
基金Financial supports of the National Natural Science Foundation of China(21878050,91934301)the State Key Laboratory of Coal Conversion(J21-22-620)the 111 Project(D17005)。
文摘Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.
基金financial supports by National Key R&D Program of China(Grant No.2017YFB0306702)are gratefully acknowledged。
文摘Nobel metallic Pt/ZSM-22 and Pt/ZSM-23 catalysts were prepared for hydroisomerization of normal dodecane and hydrodewaxing of heavy waxy lube base oil.The hydroisomerization performance of n-dodecane indicated that the Pt/ZSM-23 catalyst preferred to crack the C-C bond near the middle of n-dodecane chain,while the Pt/ZSM-22 catalyst was favorable for breaking the carbon chain near the end of n-dodecane.As a result,more than 2%of light products(gas plus naphtha)and3%more of heavy lube base oil with low-pour point and high viscosity index were produced on Pt/ZSM-22 than those on Pt/ZSM-23 while using the heavy waxy vacuum distillate oil as feedstock.
基金the National Natural Science Foundation of China (U1662103 and 21673290)the National HiTech Research and Development Program (863) of China (2015AA034603)the China National Offshore Oil Corporation Fund (LHYJYKJSA20160002)
文摘Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed.
基金Supported by the Significant Technology Achievement Transformation Foundation of Jiangsu Province, China (No.Da2005043)
文摘0.5%Pt-K/γ-Al2O3 catalysts for the synthesis of o-phenylphenol(OPP) from o-cyclohexenyl-cyclohexanone (dimer) dehydrogenation were prepared by means of a two subsequent impregnation method. The effects of catalyst preparation parameters, such as K promoters, calcination, and reduction conditions, were investigated. The results showed that the addition of K2SO4 to Pt/γ-Al2O3 catalyst notably promoted the selectivity of OPP, and its optimum content was found to be 6% in mass fraction. The higher activity was obtained when Pt/γ-Al2O3 catalyst was calcined in nitrogen atmosphere at 400--500 ℃ and then reduced at the same temperature for 3 h in hydrogen atmosphere. The conversion of the dimer and the selectivity of OPP were always above 99% and 90%, respectively, over 0.5%Pt-6% K2SO4/γ-Al2O3 catalyst during the pilot scale test of 8000 h.
基金the National Natural Science Foundation of China (51676090)the Natural Science Foundation of Jiangsu Province (BK20150513), and the Six Talent Peaks Project in Jiangsu Province.
文摘In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR.
基金supported by the CAS (Chinese Academy of Sciences) Strategic Priority Research Program (XDA-21020500)。
文摘Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.
基金supported by the National Key R&D Program of China(2018YFB1501602 and 2016YFA0202801)the National Natural Science Foundation of China(21690080,21690084,21673228,21721004,21776269,and 21606227)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)Dalian National Laboratory for Clean Energy(DNL180303)~~
文摘Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic processes.However,the stability of single atoms under oxygen-poor conditions,and the mechanism of hydrogen activation on SACs remain elusive.Here,through a combination of theoretical calculation and experiments,the stabilization of metal single atoms on tungsten oxide and its catalytic properties in H2 activation are investigated.Our calculation results indicate that the oxygen defects on the WO3(001)surface play a vital role in the stabilization of single metal atoms through electron transfer from the oxygen vacancies to the metal atoms.In comparison with Pd and Au,Pt single atoms possess greatly enhanced stability on the WOx(001)surface and carry negative charge,facilitating the dissociation of H-2 to metal-H species(Hδ-)via homolytic cleavage of H2 similar to that occurring in metal ensembles.More importantly,the facile diffusion of Pt-H to the WOx support results in the formation of Bronsted acid sites(Hδ+),imparting bifunctionality to Pt1/WOx.The dynamic formation of Br?nsted acid sites in hydrogen atmosphere proved to be the key to chemoselective hydrogenolysis of glycerol into 1,3-propanediol,which was experimentally demonstrated on the Pt1/WOx catalyst.
基金supported by Natural Science Foundation of China (Grant 21273193, 21473231 and 20973148)
文摘Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.