Pt/CeO2 catalysts with unitary Pt species,nanoparticles,clusters or single atoms,often exhibit excellent activity and unique selectivity in many catalytic reactions benefiting from their small size,abundant unsaturate...Pt/CeO2 catalysts with unitary Pt species,nanoparticles,clusters or single atoms,often exhibit excellent activity and unique selectivity in many catalytic reactions benefiting from their small size,abundant unsaturated active sites,and unique electro nic structure.In recent years,a tre mendous number of related articles have provided great inspiration to future research and development of Pt/CeO2 catalysts.In this review,the state-of-the-art evolution of Pt nanoparticles to Pt single atoms on CeO2 is reviewed with the emphasis on synthetic strategies,advanced characterization techniques(allowing one to clarify the single atoms from clusters),the catalytic applications and mechanisms from the viewpoint of theoretical calculation.Finally,the critical outlooks and the challenges faced in developing the single-atom Pt/CeO2 catalysts are highlighted.展开更多
Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the...Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant ...This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature.展开更多
Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction,and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed.The characterization results reveal that...Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction,and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed.The characterization results reveal that the presence of EuOx significantly enhances the redox property,lattice O concentration,and Ce3+ ratio of the Pt/CeO2 material,which facilitates the dispersion and activity of Pt active sites and thus accelerates the decomposition process of toluene.Among all catalysts,a sample with an Eu content of 2.5 at.%(Pt/EC-2.5)possesses the best catalytic activity with 0.09 vol% of toluene completely destructed at 200 ℃ under a relatively high GHSV of 50000 h^-1.The possible reaction pathway and mechanism of toluene combustion over Pt/Eu2O3-CeO2 samples are presented according to in-situ DRIFTS,which confirms that the toluene oxidation process obeys the Mars-van Krevelen mechanism with aldehydes and ketones as primary organic intermediates.展开更多
Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, ...Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g.h) with a stoichiometric feed of CH4 and C02. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction.展开更多
The interaction between Pt and its various supports can regulate the intrinsic electronic structure of Pt particles and their catalytic performance.Herein,Pt/CeO2 and Pt/SiC catalysts were successfully prepared via a ...The interaction between Pt and its various supports can regulate the intrinsic electronic structure of Pt particles and their catalytic performance.Herein,Pt/CeO2 and Pt/SiC catalysts were successfully prepared via a facile Pt colloidal particle deposition method,and their catalytic performance in CO oxidation was investigated.XRD,TEM,XPS and H2-TPR were used to identify the states of Pt particles on the support surface,as well as their effect on the performance of the catalysts.Formation of the Pt-O-Ce interaction is one of the factors controlling catalyst activity.Under the oxidative treatment at low temperature,the Pt-O-Ce interaction plays an important role in improving the catalytic activity.After calcining at high temperature,enhanced Pt-O-Ce interaction results in the absence of metallic Pt0 on the support surface,as evidenced by the appearance of Pt2+species.It is consistent with the XPS data of Pt/CeO2,and is the main reason behind the deactivation of the catalyst.By contrast,either no interaction is formed between Pt and SiC or Pt nanoparticles remain in the metallic Pt0 state on the SiC surface even after aging at 800℃in an oxidizing atmosphere.Thus,the Pt/SiC shows better thermal stability than Pt/CeO2.The interaction between Pt and the active support may be concluded to be essential for CO oxidation at low temperature,but strong interactions may induce serious deactivation of catalytic activity.展开更多
A comparative study of catalytic CO oxidation and selective CO oxidation over Pt/Al2O3 and CeO2-promoted Pt/Al2O3 catalysts has been investigated for the removal of a trace amount of CO from the reformed gas. The cata...A comparative study of catalytic CO oxidation and selective CO oxidation over Pt/Al2O3 and CeO2-promoted Pt/Al2O3 catalysts has been investigated for the removal of a trace amount of CO from the reformed gas. The catalysts were prepared by sol gel and incipient wetness impregnation. CO oxidation and selective CO oxidation were carried out with a 5%Pt/Al2O3 and a 5%Pt/15%CeO2/Al2O3. The presence of 15%CeO2 inthe 5%Pt/Al2O3 dramatically improves the activities to CO oxidation and selective CO oxidation at low temperature (0℃). FTIR results indicate that CO could react with lattice oxygen from ceria and release CO2 as a product. Low space velocity would obtain high CO conversion at low temperatures while high space velocity would obtain high CO conversion at high temperatures. The results also show that a 5%Pt/15%CeO2/Al2O3 can completely oxidize 1% CO at180℃with selectivity of 52% and space velocity of70,000 cm3·g-1·h-1. Under the realistic gas feed with 1%O2, this catalyst is very stable and retains its activity and selectivity at180℃during 72 h.展开更多
For heterogeneous catalysts,the build-up of interface contacts can influence markedly their activities.Being different from the conventional supported metal/oxide catalysts,the reverse type of oxide/metal structures,e...For heterogeneous catalysts,the build-up of interface contacts can influence markedly their activities.Being different from the conventional supported metal/oxide catalysts,the reverse type of oxide/metal structures,e.g.the ceria/Pt composite,have emerged as novel catalytic materials in many fields.However,it remains challenging to determine the optimal interface structure and/or the metal-oxide synergistic effect that can boost catalytic activities.In this work,we conducted density functional theory calculations with on-site Coulomb interaction correction to determine the optimal structures and investigate the physical as well as catalytic properties of various Ce O2/Pt(111)composites containing Ce O2(111)monolayer,bilayer,and trilayer at Pt(111).We found that the interaction strength between Ce O2(111)and Pt(111)substrate first reduces as the ceria slab grows from monolayer to bilayer,and then largely gets converged when the trilayer occurs.Such trend was well rationalized by analyzing the number and distances of O–Pt bonds at the interface.Calculated Bader charges uncovered the significant charge redistribution occurring around the interface,whereas the net electron transfer across the interface is non-significant and decreases as ceria thickness increases.Moreover,comparative calculations on oxygen vacancy formation energies clarified that oxygen removal can be promoted on the Ce O2/Pt(111)composites,especially at the interface.We finally employed CO oxidation as a model reaction to probe the surface reactivity,and determined an intrinsic activity order of monolayer Ce O2(111)>monolayer Ce O2(111)/Pt(111)>regular Ce O2(111).More importantly,we emphasized the significant role of the moderate ceria-Pt interaction at the interface that endows the Ce O2/Pt reverse catalyst both good thermostability and high catalytic activity.The monolayer Ce O2(111)/Pt(111)composite was theoretically predicted highly efficient for catalyzing CO oxidation.展开更多
基金Project supported by the National Natural Science Foundation of China(21906063,21876061,21805112)Key Technology R&D Program of Shandong Province(2019GSF109042)。
文摘Pt/CeO2 catalysts with unitary Pt species,nanoparticles,clusters or single atoms,often exhibit excellent activity and unique selectivity in many catalytic reactions benefiting from their small size,abundant unsaturated active sites,and unique electro nic structure.In recent years,a tre mendous number of related articles have provided great inspiration to future research and development of Pt/CeO2 catalysts.In this review,the state-of-the-art evolution of Pt nanoparticles to Pt single atoms on CeO2 is reviewed with the emphasis on synthetic strategies,advanced characterization techniques(allowing one to clarify the single atoms from clusters),the catalytic applications and mechanisms from the viewpoint of theoretical calculation.Finally,the critical outlooks and the challenges faced in developing the single-atom Pt/CeO2 catalysts are highlighted.
基金National Natural Science Foundation of China (nos.21476226 and 21506204)National Key Projects for Fundamental Research and Development of China (2016YFB0600902)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020400)the Youth Innovation Promotion Association CAS for financial support
文摘Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)+1 种基金the Introduction Of Talent and Technology Cooperation Plan Of Tianjin(14RCGFGX00849)GM Global Research&Development(GAC 1539)
文摘This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature.
基金financially supported by the National Key R&D Program of China (2016YFC0204201)the National Natural Science Foundation of China (21677114, 21477095, 21876139)the Fundamental Research Funds for the Central Universities (xjj2017170)~~
文摘Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction,and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed.The characterization results reveal that the presence of EuOx significantly enhances the redox property,lattice O concentration,and Ce3+ ratio of the Pt/CeO2 material,which facilitates the dispersion and activity of Pt active sites and thus accelerates the decomposition process of toluene.Among all catalysts,a sample with an Eu content of 2.5 at.%(Pt/EC-2.5)possesses the best catalytic activity with 0.09 vol% of toluene completely destructed at 200 ℃ under a relatively high GHSV of 50000 h^-1.The possible reaction pathway and mechanism of toluene combustion over Pt/Eu2O3-CeO2 samples are presented according to in-situ DRIFTS,which confirms that the toluene oxidation process obeys the Mars-van Krevelen mechanism with aldehydes and ketones as primary organic intermediates.
基金supported by the National Natural Science Foundation of China (No. 20873013)
文摘Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g.h) with a stoichiometric feed of CH4 and C02. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction.
基金Project supported by the National Natural Science Foundation of China(21506194,21676255)the Natural Science Foundation of Zhejiang Province,China(Y16B070025).
文摘The interaction between Pt and its various supports can regulate the intrinsic electronic structure of Pt particles and their catalytic performance.Herein,Pt/CeO2 and Pt/SiC catalysts were successfully prepared via a facile Pt colloidal particle deposition method,and their catalytic performance in CO oxidation was investigated.XRD,TEM,XPS and H2-TPR were used to identify the states of Pt particles on the support surface,as well as their effect on the performance of the catalysts.Formation of the Pt-O-Ce interaction is one of the factors controlling catalyst activity.Under the oxidative treatment at low temperature,the Pt-O-Ce interaction plays an important role in improving the catalytic activity.After calcining at high temperature,enhanced Pt-O-Ce interaction results in the absence of metallic Pt0 on the support surface,as evidenced by the appearance of Pt2+species.It is consistent with the XPS data of Pt/CeO2,and is the main reason behind the deactivation of the catalyst.By contrast,either no interaction is formed between Pt and SiC or Pt nanoparticles remain in the metallic Pt0 state on the SiC surface even after aging at 800℃in an oxidizing atmosphere.Thus,the Pt/SiC shows better thermal stability than Pt/CeO2.The interaction between Pt and the active support may be concluded to be essential for CO oxidation at low temperature,but strong interactions may induce serious deactivation of catalytic activity.
文摘A comparative study of catalytic CO oxidation and selective CO oxidation over Pt/Al2O3 and CeO2-promoted Pt/Al2O3 catalysts has been investigated for the removal of a trace amount of CO from the reformed gas. The catalysts were prepared by sol gel and incipient wetness impregnation. CO oxidation and selective CO oxidation were carried out with a 5%Pt/Al2O3 and a 5%Pt/15%CeO2/Al2O3. The presence of 15%CeO2 inthe 5%Pt/Al2O3 dramatically improves the activities to CO oxidation and selective CO oxidation at low temperature (0℃). FTIR results indicate that CO could react with lattice oxygen from ceria and release CO2 as a product. Low space velocity would obtain high CO conversion at low temperatures while high space velocity would obtain high CO conversion at high temperatures. The results also show that a 5%Pt/15%CeO2/Al2O3 can completely oxidize 1% CO at180℃with selectivity of 52% and space velocity of70,000 cm3·g-1·h-1. Under the realistic gas feed with 1%O2, this catalyst is very stable and retains its activity and selectivity at180℃during 72 h.
文摘For heterogeneous catalysts,the build-up of interface contacts can influence markedly their activities.Being different from the conventional supported metal/oxide catalysts,the reverse type of oxide/metal structures,e.g.the ceria/Pt composite,have emerged as novel catalytic materials in many fields.However,it remains challenging to determine the optimal interface structure and/or the metal-oxide synergistic effect that can boost catalytic activities.In this work,we conducted density functional theory calculations with on-site Coulomb interaction correction to determine the optimal structures and investigate the physical as well as catalytic properties of various Ce O2/Pt(111)composites containing Ce O2(111)monolayer,bilayer,and trilayer at Pt(111).We found that the interaction strength between Ce O2(111)and Pt(111)substrate first reduces as the ceria slab grows from monolayer to bilayer,and then largely gets converged when the trilayer occurs.Such trend was well rationalized by analyzing the number and distances of O–Pt bonds at the interface.Calculated Bader charges uncovered the significant charge redistribution occurring around the interface,whereas the net electron transfer across the interface is non-significant and decreases as ceria thickness increases.Moreover,comparative calculations on oxygen vacancy formation energies clarified that oxygen removal can be promoted on the Ce O2/Pt(111)composites,especially at the interface.We finally employed CO oxidation as a model reaction to probe the surface reactivity,and determined an intrinsic activity order of monolayer Ce O2(111)>monolayer Ce O2(111)/Pt(111)>regular Ce O2(111).More importantly,we emphasized the significant role of the moderate ceria-Pt interaction at the interface that endows the Ce O2/Pt reverse catalyst both good thermostability and high catalytic activity.The monolayer Ce O2(111)/Pt(111)composite was theoretically predicted highly efficient for catalyzing CO oxidation.