Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also anal...Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can be employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.展开更多
Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must...Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must balance the visual quality of the models with the rendering efficiency.The study provides a practical texture baking processing pipeline for generating 3D models to reduce the model complexity and preserve the visually pleasing details.Concretely,we apply a mesh simplification to the original model and use texture baking to create three types of baked textures,namely,a diffuse map,normal map and displacement map.The simplified model with the baked textures has a pleasing visualization effect in a rendering engine.Furthermore,we discuss the influence of various factors in the process on the results,as well as the functional principles and characteristics of the baking textures.The proposed approach is very useful for real-time rendering with limited rendering hardware as no additional memory or computing capacity is required for properly preserving the relief details of the model.Each step in the pipeline is described in detail to facilitate the realization.展开更多
基金supported by Beijing Multi-parameters 3D Geological Survey Program (No. 200313000045)
文摘Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can be employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.
基金supported by the Key Program of the National Natural Science Foundation of China[grant no 41930104].
文摘Three-dimensional(3D)high-fidelity surface models play an important role in urban scene construction.However,the data quantity of such models is large and places a tremendous burden on rendering.Many applications must balance the visual quality of the models with the rendering efficiency.The study provides a practical texture baking processing pipeline for generating 3D models to reduce the model complexity and preserve the visually pleasing details.Concretely,we apply a mesh simplification to the original model and use texture baking to create three types of baked textures,namely,a diffuse map,normal map and displacement map.The simplified model with the baked textures has a pleasing visualization effect in a rendering engine.Furthermore,we discuss the influence of various factors in the process on the results,as well as the functional principles and characteristics of the baking textures.The proposed approach is very useful for real-time rendering with limited rendering hardware as no additional memory or computing capacity is required for properly preserving the relief details of the model.Each step in the pipeline is described in detail to facilitate the realization.